vgpu_unlock/vgpu_unlock
2021-01-28 22:22:28 +01:00

198 lines
6.3 KiB
Python
Executable file

#!/bin/python3
#
# vGPU unlock script for consumer GPUs.
#
# Copyright 2021 Jonathan Johansson
# This file is part of the "vgpu_unlock" project, and is distributed under the MIT License.
# See the LICENSE file for more details.
#
import errno
import frida
import os
import queue
import subprocess
import sys
import time
script_source = r"""
// Value of the "request" argument used by nvidia-vgpud and nvidia-vgpu-mgr
// when calling ioctl to read the PCI device ID and type (and possibly
// other things) from the GPU.
var REQ_QUERY_GPU = ptr("0xC020462A");
// When issuing ioctl with REQ_QUERY_GPU then the "argp" argument is a
// pointer to a structure something like this:
//
// struct arg {
// uint32_t unknown_1; // Initialized prior to call.
// uint32_t unknown_2; // Initialized prior to call.
// uint32_t op_type; // Operation type, see comment below.
// uint32_t padding_1; // Always set to 0 prior to call.
// void* result; // Pointer initialized prior to call.
// // Pointee initialized to 0 prior to call.
// // Pointee is written by ioctl call.
// uint32_t unknown_4; // Set to 0x10 for READ_PCI_ID and set to 4 for
// READ_DEV_TYPE prior to call.
// uint32_t status; // Written by ioctl call. See comment below.
// }
// These are the observed values for the op_type member.
var OP_READ_DEV_TYPE = 0x800289; // *result type is uint64_t.
var OP_READ_PCI_ID = 0x20801801; // *result type in uint32_t, the uppper 16
// bits is the device ID.
// nvidia-vgpu-mgr expects this value for a vGPU capable GPU.
var DEV_TYPE_VGPU_CAPABLE = uint64(3);
// When ioctl returns success (retval >= 0) but sets the status value of
// the arg structure to 3 then nvidia-vgpud will sleep for a bit (first
// 0.1s then 1s then 10s) then issue the same ioctl call again until the
// status differs from 3. It will attempt this for up to 24h before giving
// up.
var STATUS_TRY_AGAIN = 3;
Interceptor.attach(Module.getExportByName(null, "ioctl"), {
onEnter(args) {
console.log("ioctl called");
this.request = args[1];
this.argp = args[2];
},
onLeave(retVal) {
if(!this.request.equals(REQ_QUERY_GPU)) {
// Not a call we care about.
return;
}
if(retVal.toInt32() < 0) {
// Call failed.
return;
}
// Lookup status value according to struct above.
var status = this.argp.add(0x1C).readU32();
if(status == STATUS_TRY_AGAIN) {
// Driver will try again.
return;
}
var op_type = this.argp.add(8).readU32();
if(op_type == OP_READ_PCI_ID) {
// Lookup address of the device ID, note that we point directly at
// the upper 16 bits of the word.
var devid_ptr = this.argp.add(0x10).readPointer().add(2);
// Now we replace the device ID with a spoofed value that needs to
// be determined such that the spoofed value represents a GPU with
// vGPU support that uses the same GPU chip as our actual GPU.
var actual_devid = devid_ptr.readU16();
var spoofed_devid = actual_devid;
// GP102
if(actual_devid == 0x1b00 || // TITAN X (Pascal)
actual_devid == 0x1b02 || // TITAN Xp
actual_devid == 0x1b06 || // GTX 1080 Ti
actual_devid == 0x1b30) { // Quadro P6000
spoofed_devid = 0x1b38; // Tesla P40
}
// GP104
if(actual_devid == 0x1b80 || // GTX 1080
actual_devid == 0x1b81 || // GTX 1070
actual_devid == 0x1b82 || // GTX 1070 Ti
actual_devid == 0x1b83 || // GTX 1060 6GB
actual_devid == 0x1b84 || // GTX 1060 3GB
actual_devid == 0x1bb0) { // Quadro P5000
spoofed_devid = 0x1bb3; // Tesla P4
}
// TU102
if(actual_devid == 0x1e02 || // TITAN RTX
actual_devid == 0x1e04 || // RTX 2080 Ti
actual_devid == 0x1e07) { // RTX 2080 Ti
spoofed_devid = 0x1e30; // Quadro RTX 6000
}
devid_ptr.writeU16(spoofed_devid);
}
if(op_type == OP_READ_DEV_TYPE) {
// Set device type to vGPU capable.
var dev_type_ptr = this.argp.add(0x10).readPointer();
dev_type_ptr.writeU64(DEV_TYPE_VGPU_CAPABLE);
}
}
});
"""
device = frida.get_local_device()
child_processes = queue.Queue()
def instrument(pid):
"""Instrument and resume process.
:param pid: Process identifier
"""
session = device.attach(pid)
# We need to also instrument the children since nvidia-vgpud forks itself
# when initially launched.
session.enable_child_gating()
script = session.create_script(script_source)
script.load()
device.resume(pid)
def on_child_added(child):
"""Callback for when a new child process has been created.
:param child: The newly created child process.
"""
child_processes.put(child.pid)
instrument(child.pid)
def wait_exit(pid):
"""Wait for a process to terminate.
:param pid: Process ID of the target process.
"""
while 1:
time.sleep(.1)
try:
os.kill(pid, 0)
except OSError as e:
if e.errno == errno.ESRCH:
break
def main():
"""Entrypoint."""
# Behave at least a little bit like a forking service.
if sys.argv[1] != "-f":
subprocess.Popen([sys.argv[0], "-f"] + sys.argv[1:])
exit()
device.on("child-added", on_child_added)
pid = device.spawn(sys.argv[2])
instrument(pid)
# Wait for everything to terminate before exiting.
wait_exit(pid)
while not child_processes.empty():
wait_exit(child_processes.get_nowait())
if __name__ == "__main__":
main()