btop/src/btop_linux.cpp

1298 lines
42 KiB
C++
Raw Normal View History

/* Copyright 2021 Aristocratos (jakob@qvantnet.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
indent = tab
tab-size = 4
*/
#if defined(__linux__)
#include <fstream>
#include <ranges>
#include <cmath>
#include <unistd.h>
#include <numeric>
#include <regex>
2021-08-11 06:20:33 +12:00
#include <sys/statvfs.h>
2021-06-20 10:49:13 +12:00
#include <btop_shared.hpp>
2021-06-20 08:48:31 +12:00
#include <btop_config.hpp>
#include <btop_tools.hpp>
using std::string, std::vector, std::ifstream, std::atomic, std::numeric_limits, std::streamsize,
std::round, std::max, std::min, std::clamp, std::string_literals::operator""s;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------
namespace Cpu {
2021-08-04 09:47:46 +12:00
vector<long long> core_old_totals;
vector<long long> core_old_idles;
vector<string> available_fields;
cpu_info current_cpu;
2021-08-04 09:47:46 +12:00
fs::path freq_path = "/sys/devices/system/cpu/cpufreq/policy0/scaling_cur_freq";
bool got_sensors = false, cpu_temp_only = false;
//* Populate found_sensors map
bool get_sensors();
//* Get current cpu clock speed
string get_cpuHz();
//* Search /proc/cpuinfo for a cpu name
string get_cpuName();
//* Parse /proc/cpu info for mapping of core ids
2021-08-04 10:11:50 +12:00
auto get_core_mapping() -> unordered_flat_map<int, int>;
2021-08-04 09:47:46 +12:00
struct Sensor {
fs::path path;
string label;
int64_t temp = 0;
int64_t high = 0;
int64_t crit = 0;
};
unordered_flat_map<string, Sensor> found_sensors;
string cpu_sensor;
vector<string> core_sensors;
unordered_flat_map<int, int> core_mapping;
}
2021-06-26 09:58:19 +12:00
namespace Shared {
2021-08-04 09:47:46 +12:00
fs::path procPath, passwd_path;
uint64_t totalMem;
long pageSize, clkTck, coreCount;
2021-06-26 09:58:19 +12:00
2021-07-21 13:17:34 +12:00
void init() {
//? Shared global variables init
procPath = (fs::is_directory(fs::path("/proc")) and access("/proc", R_OK) != -1) ? "/proc" : "";
if (procPath.empty())
throw std::runtime_error("Proc filesystem not found or no permission to read from it!");
2021-06-26 09:58:19 +12:00
passwd_path = (fs::is_regular_file(fs::path("/etc/passwd")) and access("/etc/passwd", R_OK) != -1) ? "/etc/passwd" : "";
if (passwd_path.empty())
Logger::warning("Could not read /etc/passwd, will show UID instead of username.");
2021-06-26 09:58:19 +12:00
coreCount = sysconf(_SC_NPROCESSORS_ONLN);
if (coreCount < 1) {
coreCount = 1;
Logger::warning("Could not determine number of cores, defaulting to 1.");
}
pageSize = sysconf(_SC_PAGE_SIZE);
if (pageSize <= 0) {
pageSize = 4096;
2021-06-26 09:58:19 +12:00
Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
}
clkTck = sysconf(_SC_CLK_TCK);
if (clkTck <= 0) {
clkTck = 100;
2021-07-21 13:17:34 +12:00
Logger::warning("Could not get system clock ticks per second. Defaulting to 100, processes cpu usage might be incorrect.");
2021-06-26 09:58:19 +12:00
}
ifstream meminfo(Shared::procPath / "meminfo");
if (meminfo.good()) {
meminfo.ignore(SSmax, ':');
meminfo >> totalMem;
totalMem <<= 10;
}
if (not meminfo.good() or totalMem == 0)
throw std::runtime_error("Could not get total memory size from /proc/meminfo");
//? Init for namespace Cpu
2021-08-04 09:47:46 +12:00
if (not fs::exists(Cpu::freq_path) or access(Cpu::freq_path.c_str(), R_OK) == -1) Cpu::freq_path.clear();
Cpu::current_cpu.core_percent.insert(Cpu::current_cpu.core_percent.begin(), Shared::coreCount, {});
Cpu::current_cpu.temp.insert(Cpu::current_cpu.temp.begin(), Shared::coreCount + 1, {});
Cpu::core_old_totals.insert(Cpu::core_old_totals.begin(), Shared::coreCount, 0);
Cpu::core_old_idles.insert(Cpu::core_old_idles.begin(), Shared::coreCount, 0);
Cpu::collect();
for (auto& [field, vec] : Cpu::current_cpu.cpu_percent) {
if (not vec.empty()) Cpu::available_fields.push_back(field);
}
Cpu::cpuName = Cpu::get_cpuName();
2021-08-04 09:47:46 +12:00
Cpu::got_sensors = Cpu::get_sensors();
Cpu::core_mapping = Cpu::get_core_mapping();
2021-08-11 06:20:33 +12:00
//? Init for namespace Mem
Mem::collect();
2021-08-04 09:47:46 +12:00
2021-06-26 09:58:19 +12:00
}
}
namespace Cpu {
string cpuName;
string cpuHz;
const array<string, 10> time_names = {"user", "nice", "system", "idle", "iowait", "irq", "softirq", "steal", "guest", "guest_nice"};
2021-08-04 09:47:46 +12:00
unordered_flat_map<string, long long> cpu_old = {
{"totals", 0},
{"idles", 0},
{"user", 0},
{"nice", 0},
{"system", 0},
{"idle", 0},
{"iowait", 0},
{"irq", 0},
{"softirq", 0},
{"steal", 0},
{"guest", 0},
{"guest_nice", 0}
};
string get_cpuName() {
string name;
ifstream cpuinfo(Shared::procPath / "cpuinfo");
if (cpuinfo.good()) {
for (string instr; getline(cpuinfo, instr, ':') and not instr.starts_with("model name");)
cpuinfo.ignore(SSmax, '\n');
if (cpuinfo.bad()) return name;
cpuinfo.ignore(1);
getline(cpuinfo, name);
auto name_vec = ssplit(name);
2021-08-04 09:47:46 +12:00
if ((s_contains(name, "Xeon"s) or v_contains(name_vec, "Duo"s)) and v_contains(name_vec, "CPU"s)) {
auto cpu_pos = v_index(name_vec, "CPU"s);
if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')'))
name = name_vec.at(cpu_pos + 1);
else
name.clear();
}
2021-08-04 09:47:46 +12:00
else if (v_contains(name_vec, "Ryzen"s)) {
auto ryz_pos = v_index(name_vec, "Ryzen"s);
name = "Ryzen" + (ryz_pos < name_vec.size() - 1 ? ' ' + name_vec.at(ryz_pos + 1) : "")
+ (ryz_pos < name_vec.size() - 2 ? ' ' + name_vec.at(ryz_pos + 2) : "");
}
2021-08-04 09:47:46 +12:00
else if (s_contains(name, "Intel"s) and v_contains(name_vec, "CPU"s)) {
auto cpu_pos = v_index(name_vec, "CPU"s);
if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')') and name_vec.at(cpu_pos + 1) != "@")
name = name_vec.at(cpu_pos + 1);
else
name.clear();
}
else
name.clear();
if (name.empty() and not name_vec.empty()) {
for (const auto& n : name_vec) {
if (n == "@") break;
name += n + ' ';
}
name.pop_back();
for (const auto& reg : {regex("Processor"), regex("CPU"), regex("\\(R\\)"), regex("\\(TM\\)"), regex("Intel"),
regex("AMD"), regex("Core"), regex("\\d?\\.?\\d+[mMgG][hH][zZ]")}) {
name = std::regex_replace(name, reg, "");
}
name = trim(name);
}
}
return name;
}
2021-08-04 09:47:46 +12:00
bool get_sensors() {
bool got_cpu = false, got_coretemp = false;
vector<fs::path> search_paths;
try {
//? Setup up paths to search for sensors
if (fs::exists(fs::path("/sys/class/hwmon")) and access("/sys/class/hwmon", R_OK) != -1) {
for (const auto& dir : fs::directory_iterator(fs::path("/sys/class/hwmon"))) {
fs::path add_path = fs::canonical(dir.path());
if (v_contains(search_paths, add_path) or v_contains(search_paths, add_path / "device")) continue;
if (s_contains(add_path, "coretemp"))
got_coretemp = true;
if (fs::exists(add_path / "temp1_input")) {
search_paths.push_back(add_path);
}
else if (fs::exists(add_path / "device/temp1_input"))
search_paths.push_back(add_path / "device");
}
}
if (not got_coretemp and fs::exists(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) {
for (auto& d : fs::directory_iterator(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) {
fs::path add_path = fs::canonical(d.path());
if (fs::exists(d.path() / "temp1_input") and not v_contains(search_paths, add_path)) {
search_paths.push_back(add_path);
got_coretemp = true;
}
}
}
//? Scan any found directories for temperature sensors
if (not search_paths.empty()) {
for (const auto& path : search_paths) {
const string pname = readfile(path / "name", path.filename());
for (int i = 1; fs::exists(path / string("temp" + to_string(i) + "_input")); i++) {
const string basepath = path / string("temp" + to_string(i) + "_");
const string label = readfile(fs::path(basepath + "label"), "temp" + to_string(i));
const string sensor_name = pname + "/" + label;
const int64_t temp = stol(readfile(fs::path(basepath + "input"), "0")) / 1000;
const int64_t high = stol(readfile(fs::path(basepath + "max"), "80000")) / 1000;
const int64_t crit = stol(readfile(fs::path(basepath + "crit"), "95000")) / 1000;
found_sensors[sensor_name] = {fs::path(basepath + "input"), label, temp, high, crit};
if (not got_cpu and (label.starts_with("Package id") or label.starts_with("Tdie"))) {
got_cpu = true;
cpu_sensor = sensor_name;
}
else if (label.starts_with("Core") or label.starts_with("Tccd")) {
got_coretemp = true;
if (not v_contains(core_sensors, sensor_name)) core_sensors.push_back(sensor_name);
}
}
}
}
//? If no good candidate for cpu temp has been found scan /sys/class/thermal
if (not got_cpu and fs::exists(fs::path("/sys/class/thermal"))) {
const string rootpath = fs::path("/sys/class/thermal/thermal_zone");
for (int i = 0; fs::exists(fs::path(rootpath + to_string(i))); i++) {
const fs::path basepath = rootpath + to_string(i);
if (not fs::exists(basepath / "temp")) continue;
const string label = readfile(basepath / "type", "temp" + to_string(i));
const string sensor_name = "thermal" + to_string(i) + "/" + label;
const int64_t temp = stol(readfile(basepath / "temp", "0")) / 1000;
int64_t high, crit;
for (int ii = 0; fs::exists(basepath / string("trip_point_" + to_string(ii) + "_temp")); ii++) {
const string trip_type = readfile(basepath / string("trip_point_" + to_string(ii) + "_type"));
if (not is_in(trip_type, "high", "critical")) continue;
auto& val = (trip_type == "high" ? high : crit);
val = stol(readfile(basepath / string("trip_point_" + to_string(ii) + "_temp"), "0")) / 1000;
}
if (high < 1) high = 80;
if (crit < 1) crit = 95;
found_sensors[sensor_name] = {basepath / "temp", label, temp, high, crit};
}
}
}
catch (...) {}
if (not got_coretemp) cpu_temp_only = true;
if (cpu_sensor.empty() and not found_sensors.empty()) {
for (const auto& [name, sensor] : found_sensors) {
if (s_contains(str_to_lower(name), "cpu")) {
cpu_sensor = name;
break;
}
}
if (cpu_sensor.empty()) {
cpu_sensor = found_sensors.begin()->first;
Logger::warning("No good candidate for cpu sensor found, using random from all found sensors.");
}
}
return not found_sensors.empty();
}
void update_sensors() {
if (cpu_sensor.empty()) return;
const auto& cpu_sensor = (not Config::getS("cpu_sensor").empty() and found_sensors.contains(Config::getS("cpu_sensor")) ? Config::getS("cpu_sensor") : Cpu::cpu_sensor);
found_sensors.at(cpu_sensor).temp = stol(readfile(found_sensors.at(cpu_sensor).path, "0")) / 1000;
current_cpu.temp.at(0).push_back(found_sensors.at(cpu_sensor).temp);
current_cpu.temp_max = found_sensors.at(cpu_sensor).crit;
if (current_cpu.temp.at(0).size() > 20) current_cpu.temp.at(0).pop_front();
if (Config::getB("show_coretemp") and not cpu_temp_only) {
vector<string> done;
for (const auto& sensor : core_sensors) {
if (v_contains(done, sensor)) continue;
found_sensors.at(sensor).temp = stol(readfile(found_sensors.at(sensor).path, "0")) / 1000;
done.push_back(sensor);
}
for (const auto& [core, temp] : core_mapping) {
if ((size_t)core + 1 < current_cpu.temp.size() and (size_t)temp < core_sensors.size()) {
current_cpu.temp.at(core + 1).push_back(found_sensors.at(core_sensors.at(temp)).temp);
if (current_cpu.temp.at(core + 1).size() > 20) current_cpu.temp.at(core + 1).pop_front();
}
}
}
}
string get_cpuHz() {
2021-08-04 09:47:46 +12:00
static int failed = 0;
if (failed > 4) return ""s;
string cpuhz;
try {
2021-08-04 09:47:46 +12:00
double hz = 0.0;
//? Try to get freq from /sys/devices/system/cpu/cpufreq/policy first (faster)
if (not freq_path.empty()) {
hz = stod(readfile(freq_path, "0.0")) / 1000;
if (hz <= 0.0 and ++failed >= 2)
freq_path.clear();
}
//? If freq from /sys failed or is missing try to use /proc/cpuinfo
if (hz <= 0.0) {
ifstream cpufreq(Shared::procPath / "cpuinfo");
if (cpufreq.good()) {
while (cpufreq.ignore(SSmax, '\n')) {
if (cpufreq.peek() == 'c') {
cpufreq.ignore(SSmax, ' ');
if (cpufreq.peek() == 'M') {
cpufreq.ignore(SSmax, ':');
cpufreq.ignore(1);
cpufreq >> hz;
break;
}
}
}
}
}
2021-08-04 09:47:46 +12:00
if (hz <= 1 or hz >= 1000000) throw std::runtime_error("Failed to read /sys/devices/system/cpu/cpufreq/policy and /proc/cpuinfo.");
if (hz >= 1000) {
if (hz >= 10000) cpuhz = to_string((int)round(hz / 1000)); // Future proof until we reach THz speeds :)
else cpuhz = to_string(round(hz / 100) / 10.0).substr(0, 3);
cpuhz += " GHz";
}
else if (hz > 0)
cpuhz = to_string((int)round(hz)) + " MHz";
}
2021-08-04 09:47:46 +12:00
catch (const std::exception& e) {
if (++failed < 5) return ""s;
else {
Logger::warning("get_cpuHZ() : " + (string)e.what());
return ""s;
}
}
return cpuhz;
}
2021-08-04 10:11:50 +12:00
auto get_core_mapping() -> unordered_flat_map<int, int> {
2021-08-04 09:47:46 +12:00
unordered_flat_map<int, int> core_map;
2021-08-11 06:20:33 +12:00
//? Try to get core mapping from /proc/cpuinfo
ifstream cpuinfo(Shared::procPath / "cpuinfo");
2021-08-04 09:47:46 +12:00
if (cpuinfo.good()) {
int cpu, core;
for (string instr; cpuinfo >> instr;) {
if (instr == "processor") {
cpuinfo.ignore(SSmax, ':');
cpuinfo >> cpu;
}
else if (instr.starts_with("core")) {
cpuinfo.ignore(SSmax, ':');
cpuinfo >> core;
core_map[cpu] = core;
}
cpuinfo.ignore(SSmax, '\n');
}
}
2021-08-11 06:20:33 +12:00
//? If core mapping from cpuinfo was incomplete try to guess remainder, if missing completely map 0-0 1-1 2-2 etc.
2021-08-04 09:47:46 +12:00
if (core_map.size() < (size_t)Shared::coreCount) {
2021-08-11 06:20:33 +12:00
if (Shared::coreCount % 2 == 0 and (long)core_map.size() == Shared::coreCount / 2) {
2021-08-04 09:47:46 +12:00
for (int i = 0; i < Shared::coreCount / 2; i++)
core_map[Shared::coreCount / 2 + i] = i;
}
else {
core_map.clear();
for (int i = 0; i < Shared::coreCount; i++)
core_map[i] = i;
}
}
2021-08-11 06:20:33 +12:00
//? Apply user set custom mapping if any
2021-08-04 09:47:46 +12:00
const auto& custom_map = Config::getS("cpu_core_map");
if (not custom_map.empty()) {
try {
for (const auto& split : ssplit(custom_map)) {
const auto vals = ssplit(split, ':');
if (vals.size() != 2) continue;
int change_id = std::stoi(vals.at(0));
int new_id = std::stoi(vals.at(1));
if (not core_map.contains(change_id) or new_id >= Shared::coreCount) continue;
2021-08-11 06:20:33 +12:00
core_map.at(change_id) = new_id;
2021-08-04 09:47:46 +12:00
}
}
catch (...) {}
}
return core_map;
}
2021-08-04 10:11:50 +12:00
auto collect(const bool no_update) -> cpu_info {
2021-08-04 09:47:46 +12:00
if (Runner::stopping or (no_update and not current_cpu.cpu_percent.at("total").empty())) return current_cpu;
auto& cpu = current_cpu;
ifstream cread;
2021-08-04 09:47:46 +12:00
try {
//? Get cpu load averages from /proc/loadavg
cread.open(Shared::procPath / "loadavg");
if (cread.good()) {
cread >> cpu.load_avg[0] >> cpu.load_avg[1] >> cpu.load_avg[2];
}
cread.close();
//? Get cpu total times for all cores from /proc/stat
cread.open(Shared::procPath / "stat");
for (int i = 0; cread.good() and cread.peek() == 'c'; i++) {
cread.ignore(SSmax, ' ');
2021-08-04 09:47:46 +12:00
//? Expected on kernel 2.6.3> : 0=user, 1=nice, 2=system, 3=idle, 4=iowait, 5=irq, 6=softirq, 7=steal, 8=guest, 9=guest_nice
vector<long long> times;
long long total_sum = 0;
for (uint64_t val; cread >> val; total_sum += val) {
times.push_back(val);
}
cread.clear();
if (times.size() < 4) throw std::runtime_error("Malformatted /proc/stat");
//? Subtract fields 8-9 and any future unknown fields
2021-08-04 09:47:46 +12:00
const long long totals = max(0ll, total_sum - (times.size() > 8 ? std::accumulate(times.begin() + 8, times.end(), 0) : 0));
//? Add iowait field if present
2021-08-04 09:47:46 +12:00
const long long idles = max(0ll, times.at(3) + (times.size() > 4 ? times.at(4) : 0));
//? Calculate values for totals from first line of stat
if (i == 0) {
2021-08-04 09:47:46 +12:00
const long long calc_totals = max(1ll, totals - cpu_old.at("totals"));
const long long calc_idles = max(1ll, idles - cpu_old.at("idles"));
cpu_old.at("totals") = totals;
cpu_old.at("idles") = idles;
//? Total usage of cpu
2021-08-04 09:47:46 +12:00
cpu.cpu_percent.at("total").push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));
//? Reduce size if there are more values than needed for graph
2021-08-11 06:20:33 +12:00
if (cpu.cpu_percent.at("total").size() > (size_t)Term::width * 2) cpu.cpu_percent.at("total").pop_front();
//? Populate cpu.cpu_percent with all fields from stat
for (int ii = 0; const auto& val : times) {
2021-08-04 09:47:46 +12:00
cpu.cpu_percent.at(time_names.at(ii)).push_back(clamp((long long)round((double)(val - cpu_old.at(time_names.at(ii))) * 100 / calc_totals), 0ll, 100ll));
cpu_old.at(time_names.at(ii)) = val;
//? Reduce size if there are more values than needed for graph
2021-08-11 06:20:33 +12:00
if (cpu.cpu_percent.at(time_names.at(ii)).size() > (size_t)Term::width * 2) cpu.cpu_percent.at(time_names.at(ii)).pop_front();
if (++ii == 10) break;
}
}
//? Calculate cpu total for each core
else {
if (i > Shared::coreCount) break;
2021-08-04 09:47:46 +12:00
const long long calc_totals = max(0ll, totals - core_old_totals.at(i-1));
const long long calc_idles = max(0ll, idles - core_old_idles.at(i-1));
core_old_totals.at(i-1) = totals;
core_old_idles.at(i-1) = idles;
2021-08-04 09:47:46 +12:00
cpu.core_percent.at(i-1).push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));
//? Reduce size if there are more values than needed for graph
2021-08-04 09:47:46 +12:00
if (cpu.core_percent.at(i-1).size() > 40) cpu.core_percent.at(i-1).pop_front();
}
}
}
2021-08-04 09:47:46 +12:00
catch (const std::exception& e) {
Logger::debug("get_cpuHz() : " + (string)e.what());
if (cread.bad()) throw std::runtime_error("Failed to read /proc/stat");
else throw std::runtime_error("collect() : " + (string)e.what());
}
if (Config::getB("show_cpu_freq"))
cpuHz = get_cpuHz();
2021-08-04 09:47:46 +12:00
if (Config::getB("check_temp") and got_sensors)
update_sensors();
return cpu;
}
}
namespace Mem {
bool has_swap = false;
2021-08-11 06:20:33 +12:00
bool disks_fail = false;
vector<string> fstab;
fs::file_time_type fstab_time;
int disk_ios = 0;
2021-08-11 06:20:33 +12:00
mem_info current_mem {};
2021-08-04 10:11:50 +12:00
auto collect(const bool no_update) -> mem_info {
2021-08-11 06:20:33 +12:00
if (Runner::stopping or no_update) return current_mem;
auto& show_swap = Config::getB("show_swap");
auto& swap_disk = Config::getB("swap_disk");
auto& show_disks = Config::getB("show_disks");
auto& mem = current_mem;
mem.stats.at("swap_total") = 0;
//? Read memory info from /proc/meminfo
ifstream meminfo(Shared::procPath / "meminfo");
if (meminfo.good()) {
bool got_avail = false;
for (string label; meminfo >> label;) {
if (label == "MemFree:") {
meminfo >> mem.stats.at("free");
mem.stats.at("free") <<= 10;
}
else if (label == "MemAvailable:") {
meminfo >> mem.stats.at("available");
mem.stats.at("available") <<= 10;
got_avail = true;
}
else if (label == "Cached:") {
meminfo >> mem.stats.at("cached");
mem.stats.at("cached") <<= 10;
if (not show_swap and not swap_disk) break;
}
else if (label == "SwapTotal:") {
meminfo >> mem.stats.at("swap_total");
mem.stats.at("swap_total") <<= 10;
}
else if (label == "SwapFree:") {
meminfo >> mem.stats.at("swap_free");
mem.stats.at("swap_free") <<= 10;
break;
}
meminfo.ignore(SSmax, '\n');
}
if (not got_avail) mem.stats.at("available") = mem.stats.at("free") + mem.stats.at("cached");
mem.stats.at("used") = Shared::totalMem - mem.stats.at("available");
if (mem.stats.at("swap_total") > 0) mem.stats.at("swap_used") = mem.stats.at("swap_total") - mem.stats.at("swap_free");
}
else
throw std::runtime_error("Failed to read /proc/meminfo");
meminfo.close();
//? Calculate percentages
for (const auto& name : mem_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / Shared::totalMem));
}
if (show_swap and mem.stats.at("swap_total") > 0) {
for (const auto& name : swap_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / mem.stats.at("swap_total")));
}
has_swap = true;
}
else
has_swap = false;
//? Remove values beyond whats needed for graph creation
for (auto& [ignored, deq] : mem.percent) {
if (deq.size() > (size_t)Term::width * 2) deq.pop_front();
}
//? Get disks stats
if (show_disks and not disks_fail) {
try {
auto& disks_filter = Config::getS("disks_filter");
bool filter_exclude = false;
auto& use_fstab = Config::getB("use_fstab");
auto& only_physical = Config::getB("only_physical");
auto& disks = mem.disks;
ifstream diskread;
vector<string> filter;
if (not disks_filter.empty()) {
filter = ssplit(disks_filter);
if (filter.at(0).starts_with("exclude=")) {
filter_exclude = true;
filter.at(0) = filter.at(0).substr(8);
}
}
//? Get list of "real" filesystems from /proc/filesystems
vector<string> fstypes;
if (only_physical and not use_fstab) {
fstypes = {"zfs", "wslfs", "drvfs"};
diskread.open(Shared::procPath / "filesystems");
if (diskread.good()) {
for (string fstype; diskread >> fstype;) {
if (not is_in(fstype, "nodev", "squashfs", "nullfs"))
fstypes.push_back(fstype);
diskread.ignore(SSmax, '\n');
}
}
else
throw std::runtime_error("Failed to read /proc/filesystems");
diskread.close();
}
//? Get disk list to use from fstab if enabled
if (use_fstab and fs::last_write_time("/etc/fstab") != fstab_time) {
fstab.clear();
fstab_time = fs::last_write_time("/etc/fstab");
diskread.open("/etc/fstab");
if (diskread.good()) {
for (string instr; diskread >> instr;) {
if (not instr.starts_with('#')) {
diskread >> instr;
if (not is_in(instr, "none", "swap")) fstab.push_back(instr);
}
diskread.ignore(SSmax, '\n');
}
}
else
throw std::runtime_error("Failed to read /etc/fstab");
diskread.close();
}
//? Get mounts from /etc/mtab or /proc/self/mounts
vector<string> found;
diskread.open((fs::exists("/etc/mtab") ? fs::path("/etc/mtab") : Shared::procPath / "self/mounts"));
if (diskread.good()) {
string dev, mountpoint, fstype;
while (not diskread.eof()) {
std::error_code ec;
diskread >> dev >> mountpoint >> fstype;
//? Match filter if not empty
if (not filter.empty()) {
bool match = v_contains(filter, mountpoint);
if ((filter_exclude and match) or (not filter_exclude and not match))
continue;
}
if ((not use_fstab and not only_physical)
or (use_fstab and v_contains(fstab, mountpoint))
or (not use_fstab and only_physical and v_contains(fstypes, fstype))) {
found.push_back(mountpoint);
//? Save mountpoint, name, dev path and path to /sys/block stat file
if (not disks.contains(mountpoint)) {
disks[mountpoint] = disk_info{fs::canonical(dev, ec), fs::path(mountpoint).filename()};
if (disks.at(mountpoint).dev.empty()) disks.at(mountpoint).dev = dev;
if (disks.at(mountpoint).name.empty()) disks.at(mountpoint).name = (mountpoint == "/" ? "root" : mountpoint);
string devname = disks.at(mountpoint).dev.filename();
while (devname.size() >= 2) {
if (fs::exists("/sys/block/" + devname + "/stat")) {
disks.at(mountpoint).stat = "/sys/block/" + devname + "/stat";
break;
}
devname.resize(devname.size() - 1);
}
}
}
diskread.ignore(SSmax, '\n');
}
//? Remove disks no longer mounted or filtered out
if (swap_disk and has_swap) found.push_back("swap");
for (auto i = disks.begin(); i != disks.end();) {
if (not v_contains(found, i->first))
i = disks.erase(i);
else
i++;
}
}
else
throw std::runtime_error("Failed to get mounts from /etc/mtab and /proc/self/mounts");
diskread.close();
//? Get disk/partition stats
for (auto& [mountpoint, disk] : disks) {
if (not fs::exists(mountpoint)) continue;
struct statvfs vfs;
if (statvfs(mountpoint.c_str(), &vfs) < 0) {
Logger::warning("Failed to get disk/partition stats with statvfs() for: " + mountpoint);
continue;
}
disk.total = vfs.f_blocks * vfs.f_frsize;
disk.free = vfs.f_bfree * vfs.f_frsize;
disk.used = disk.total - disk.free;
disk.used_percent = round((double)disk.used * 100 / disk.total);
disk.free_percent = 100 - disk.used_percent;
}
//? Setup disks order in UI and add swap if enabled
mem.disks_order.clear();
if (disks.contains("/")) mem.disks_order.push_back("/");
if (swap_disk and has_swap) {
mem.disks_order.push_back("swap");
if (not disks.contains("swap")) disks["swap"] = {"", "swap"};
disks.at("swap").total = mem.stats.at("swap_total");
disks.at("swap").used = mem.stats.at("swap_used");
disks.at("swap").free = mem.stats.at("swap_free");
disks.at("swap").used_percent = mem.percent.at("swap_used").back();
disks.at("swap").free_percent = mem.percent.at("swap_free").back();
}
for (const auto& name : found)
if (not is_in(name, "/", "swap")) mem.disks_order.push_back(name);
//? Get disks IO
int64_t sectors_read, sectors_write;
disk_ios = 0;
for (auto& [ignored, disk] : disks) {
if (disk.stat.empty()) continue;
diskread.open(disk.stat);
if (diskread.good()) {
disk_ios++;
for (int i = 0; i < 2; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
diskread >> sectors_read;
if (disk.io_read.empty())
disk.io_read.push_back(0);
else
disk.io_read.push_back(max(0l, (sectors_read - disk.old_io.at(0)) * 512));
disk.old_io.at(0) = sectors_read;
if (disk.io_read.size() > (size_t)Term::width * 2) disk.io_read.pop_front();
for (int i = 0; i < 3; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
diskread >> sectors_write;
if (disk.io_write.empty())
disk.io_write.push_back(0);
else
disk.io_write.push_back(max(0l, (sectors_write - disk.old_io.at(1)) * 512));
disk.old_io.at(1) = sectors_write;
if (disk.io_write.size() > (size_t)Term::width * 2) disk.io_write.pop_front();
}
diskread.close();
}
}
catch (const std::exception& e) {
Logger::warning("Error in Mem::collect() : " + (string)e.what());
disks_fail = true;
}
}
return mem;
}
}
namespace Net {
net_info current_net;
2021-08-04 10:11:50 +12:00
auto collect(const bool no_update) -> net_info {
(void)no_update;
return current_net;
}
}
namespace Proc {
namespace {
struct p_cache {
string name, cmd, user;
size_t name_offset;
uint64_t cpu_t = 0, cpu_s = 0;
string prefix = "";
size_t depth = 0;
bool collapsed = false;
};
vector<proc_info> current_procs;
unordered_flat_map<size_t, p_cache> cache;
unordered_flat_map<string, string> uid_user;
2021-08-11 06:20:33 +12:00
fs::file_time_type passwd_time;
uint64_t cputimes;
int counter = 0;
}
int collapse = -1, expand = -1;
uint64_t old_cputimes = 0;
atomic<int> numpids = 0;
vector<string> sort_vector = {
"pid",
"name",
"command",
"threads",
"user",
"memory",
"cpu direct",
"cpu lazy",
};
unordered_flat_map<char, string> proc_states = {
{'R', "Running"},
{'S', "Sleeping"},
{'D', "Waiting"},
{'Z', "Zombie"},
{'T', "Stopped"},
{'t', "Tracing"},
{'X', "Dead"},
{'x', "Dead"},
{'K', "Wakekill"},
{'W', "Unknown"},
{'P', "Parked"}
};
detail_container detailed;
//* Generate process tree list
2021-07-21 13:17:34 +12:00
void _tree_gen(const proc_info& cur_proc, const vector<proc_info>& in_procs, vector<proc_info>& out_procs, int cur_depth, const bool collapsed, const string& filter, bool found=false) {
auto cur_pos = out_procs.size();
bool filtering = false;
//? If filtering, include children of matching processes
if (not filter.empty() and not found) {
if (not s_contains(std::to_string(cur_proc.pid), filter)
and not s_contains(cur_proc.name, filter)
and not s_contains(cur_proc.cmd, filter)
and not s_contains(cur_proc.user, filter)) {
filtering = true;
}
else {
found = true;
cur_depth = 0;
}
}
if (not collapsed and not filtering) {
out_procs.push_back(cur_proc);
if (std::string_view cmd_view = cur_proc.cmd; not cmd_view.empty()) {
2021-07-21 13:17:34 +12:00
cmd_view = cmd_view.substr(0, std::min(cmd_view.find(' '), cmd_view.size()));
cmd_view = cmd_view.substr(std::min(cmd_view.find_last_of('/') + 1, cmd_view.size()));
if (cmd_view == cur_proc.name)
out_procs.back().cmd.clear();
else
out_procs.back().cmd = '(' + (string)cmd_view + ')';
}
}
2021-06-21 08:07:04 +12:00
int children = 0;
2021-06-21 08:07:04 +12:00
for (auto& p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) {
if (collapsed and not filtering) {
2021-06-21 08:07:04 +12:00
out_procs.back().cpu_p += p.cpu_p;
out_procs.back().mem += p.mem;
out_procs.back().threads += p.threads;
}
2021-06-27 11:19:57 +12:00
else children++;
_tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cache.at(cur_proc.pid).collapsed), filter, found);
}
if (collapsed or filtering) return;
if (out_procs.size() > cur_pos + 1 and not out_procs.back().prefix.ends_with("]─"))
2021-06-27 11:19:57 +12:00
out_procs.back().prefix.replace(out_procs.back().prefix.size() - 8, 8, " └─ ");
out_procs.at(cur_pos).prefix = ""s * cur_depth + (children > 0 ? (cache.at(cur_proc.pid).collapsed ? "[+]─" : "[-]─") : " ├─ ");
}
//* Get detailed info for selected process
void _collect_details(const size_t pid, const uint64_t uptime, vector<proc_info>& procs) {
fs::path pid_path = Shared::procPath / std::to_string(pid);
if (pid != detailed.last_pid) {
detailed = {};
detailed.last_pid = pid;
2021-08-11 06:20:33 +12:00
detailed.skip_smaps = not Config::getB("proc_info_smaps");
}
//? Copy proc_info for process from proc vector
2021-08-11 06:20:33 +12:00
auto p_info = rng::find(procs, pid, &proc_info::pid);
detailed.entry = *p_info;
//? Update cpu percent deque for process cpu graph
if (not Config::getB("proc_per_core")) detailed.entry.cpu_p *= Shared::coreCount;
detailed.cpu_percent.push_back(round(detailed.entry.cpu_p));
2021-08-11 06:20:33 +12:00
if (detailed.cpu_percent.size() > (size_t)Term::width) detailed.cpu_percent.pop_front();
//? Process runtime
detailed.elapsed = sec_to_dhms(uptime - (cache.at(pid).cpu_s / Shared::clkTck));
if (detailed.elapsed.size() > 8) detailed.elapsed.resize(detailed.elapsed.size() - 3);
//? Get parent process name
if (detailed.parent.empty() and cache.contains(detailed.entry.ppid)) detailed.parent = cache.at(detailed.entry.ppid).name;
//? Expand process status from single char to explanative string
detailed.status = (proc_states.contains(detailed.entry.state)) ? proc_states.at(detailed.entry.state) : "Unknown";
ifstream d_read;
string short_str;
//? Try to get RSS mem from proc/[pid]/smaps
detailed.memory.clear();
if (not detailed.skip_smaps and fs::exists(pid_path / "smaps")) {
d_read.open(pid_path / "smaps");
2021-08-04 09:47:46 +12:00
uint64_t rss = 0;
try {
while (d_read.good()) {
d_read.ignore(SSmax, 'R');
if (d_read.peek() == 's') {
d_read.ignore(SSmax, ':');
getline(d_read, short_str, 'k');
rss += stoull(short_str);
}
}
2021-08-04 09:47:46 +12:00
if (rss == detailed.entry.mem >> 10)
detailed.skip_smaps = true;
else {
detailed.mem_bytes.push_back(rss << 10);
detailed.memory = floating_humanizer(rss, false, 1);
}
}
2021-08-04 09:47:46 +12:00
catch (const std::invalid_argument&) {}
catch (const std::out_of_range&) {}
d_read.close();
}
if (detailed.memory.empty()) {
detailed.mem_bytes.push_back(detailed.entry.mem);
detailed.memory = floating_humanizer(detailed.entry.mem);
}
if (detailed.first_mem == -1 or detailed.first_mem < detailed.mem_bytes.back() / 2 or detailed.first_mem > detailed.mem_bytes.back() * 4) {
detailed.first_mem = min((uint64_t)detailed.mem_bytes.back() * 2, Shared::totalMem);
redraw = true;
}
2021-08-11 06:20:33 +12:00
if (detailed.mem_bytes.size() > (size_t)Term::width) detailed.mem_bytes.pop_front();
//? Get bytes read and written from proc/[pid]/io
if (fs::exists(pid_path / "io")) {
d_read.open(pid_path / "io");
2021-08-04 09:47:46 +12:00
try {
string name;
while (d_read.good()) {
getline(d_read, name, ':');
if (name.ends_with("read_bytes")) {
getline(d_read, short_str);
detailed.io_read = floating_humanizer(stoull(short_str));
}
else if (name.ends_with("write_bytes")) {
getline(d_read, short_str);
detailed.io_write = floating_humanizer(stoull(short_str));
break;
}
2021-08-04 09:47:46 +12:00
else
d_read.ignore(SSmax, '\n');
}
}
2021-08-04 09:47:46 +12:00
catch (const std::invalid_argument&) {}
catch (const std::out_of_range&) {}
d_read.close();
}
}
//* Collects and sorts process information from /proc
2021-08-04 10:11:50 +12:00
auto collect(const bool no_update) -> vector<proc_info> {
2021-07-21 13:17:34 +12:00
const auto& sorting = Config::getS("proc_sorting");
const auto& reverse = Config::getB("proc_reversed");
const auto& filter = Config::getS("proc_filter");
const auto& per_core = Config::getB("proc_per_core");
const auto& tree = Config::getB("proc_tree");
const auto& show_detailed = Config::getB("show_detailed");
const size_t detailed_pid = Config::getI("detailed_pid");
ifstream pread;
2021-06-26 09:58:19 +12:00
string long_string;
string short_str;
2021-07-21 13:17:34 +12:00
const double uptime = system_uptime();
vector<proc_info> procs;
procs.reserve(current_procs.size() + 10);
const int cmult = (per_core) ? Shared::coreCount : 1;
bool got_detailed = false;
if (no_update and not cache.empty()) {
procs = current_procs;
if (show_detailed and detailed_pid != detailed.last_pid) _collect_details(detailed_pid, round(uptime), procs);
goto proc_no_update;
}
//? Update uid_user map if /etc/passwd changed since last run
2021-08-11 06:20:33 +12:00
if (not Shared::passwd_path.empty() and fs::last_write_time(Shared::passwd_path) != passwd_time) {
string r_uid, r_user;
2021-08-11 06:20:33 +12:00
passwd_time = fs::last_write_time(Shared::passwd_path);
uid_user.clear();
2021-06-26 09:58:19 +12:00
pread.open(Shared::passwd_path);
if (pread.good()) {
2021-07-21 13:17:34 +12:00
while (not pread.eof()) {
getline(pread, r_user, ':');
pread.ignore(SSmax, ':');
getline(pread, r_uid, ':');
uid_user[r_uid] = r_user;
pread.ignore(SSmax, '\n');
}
}
2021-08-11 06:20:33 +12:00
else {
Shared::passwd_path.clear();
}
pread.close();
}
//* Get cpu total times from /proc/stat
cputimes = 0;
pread.open(Shared::procPath / "stat");
if (pread.good()) {
pread.ignore(SSmax, ' ');
for (uint64_t times; pread >> times; cputimes += times);
pread.close();
}
else throw std::runtime_error("Failure to read /proc/stat");
//* Iterate over all pids in /proc
for (const auto& d: fs::directory_iterator(Shared::procPath)) {
if (Runner::stopping)
2021-08-04 09:47:46 +12:00
return procs;
if (pread.is_open()) pread.close();
2021-07-21 13:17:34 +12:00
const string pid_str = d.path().filename();
if (not isdigit(pid_str[0])) continue;
proc_info new_proc (stoul(pid_str));
//* Cache program name, command and username
if (not cache.contains(new_proc.pid)) {
string name, cmd, user;
pread.open(d.path() / "comm");
if (not pread.good()) continue;
getline(pread, name);
pread.close();
size_t name_offset = rng::count(name, ' ');
pread.open(d.path() / "cmdline");
if (not pread.good()) continue;
long_string.clear();
while(getline(pread, long_string, '\0')) cmd += long_string + ' ';
pread.close();
if (not cmd.empty()) cmd.pop_back();
pread.open(d.path() / "status");
if (not pread.good()) continue;
string uid;
string line;
2021-07-21 13:17:34 +12:00
while (not pread.eof()) {
getline(pread, line, ':');
if (line == "Uid") {
pread.ignore();
getline(pread, uid, '\t');
break;
} else {
pread.ignore(SSmax, '\n');
}
}
pread.close();
user = (uid_user.contains(uid)) ? uid_user.at(uid) : uid;
cache[new_proc.pid] = {name, cmd, user, name_offset};
}
2021-08-11 06:20:33 +12:00
new_proc.name = cache.at(new_proc.pid).name;
new_proc.cmd = cache.at(new_proc.pid).cmd;
new_proc.user = cache.at(new_proc.pid).user;
//* Parse /proc/[pid]/stat
pread.open(d.path() / "stat");
if (not pread.good()) continue;
//? Check cached value for whitespace characters in name and set offset to get correct fields from stat file
size_t& offset = cache.at(new_proc.pid).name_offset;
short_str.clear();
size_t x = 0, next_x = 3;
uint64_t cpu_t = 0;
try {
2021-08-11 06:20:33 +12:00
for (;;) {
2021-08-04 09:47:46 +12:00
while (pread.good() and ++x - offset < next_x) {
pread.ignore(SSmax, ' ');
}
2021-08-11 06:20:33 +12:00
if (pread.bad()) goto stat_loop_done;
getline(pread, short_str, ' ');
switch (x-offset) {
case 3: { //? Process state
2021-08-11 06:20:33 +12:00
new_proc.state = short_str.at(0);
continue;
}
case 4: { //? Parent pid
new_proc.ppid = stoull(short_str);
next_x = 14;
continue;
}
case 14: { //? Process utime
cpu_t = stoull(short_str);
continue;
}
case 15: { //? Process stime
cpu_t += stoull(short_str);
next_x = 19;
continue;
}
case 19: { //? Nice value
new_proc.p_nice = stoull(short_str);
continue;
}
case 20: { //? Number of threads
new_proc.threads = stoull(short_str);
2021-08-11 06:20:33 +12:00
if (cache.at(new_proc.pid).cpu_s == 0) {
next_x = 22;
2021-08-11 06:20:33 +12:00
cache.at(new_proc.pid).cpu_t = cpu_t;
}
else
next_x = 24;
continue;
}
case 22: { //? Save cpu seconds to cache if missing
2021-08-11 06:20:33 +12:00
cache.at(new_proc.pid).cpu_s = stoull(short_str);
next_x = 24;
continue;
}
case 24: { //? RSS memory (can be inaccurate, but parsing smaps increases total cpu usage by ~20x)
new_proc.mem = stoull(short_str) * Shared::pageSize;
next_x = 39;
continue;
}
case 39: { //? CPU number last executed on
new_proc.cpu_n = stoull(short_str);
goto stat_loop_done;
}
}
}
}
2021-07-19 04:04:49 +12:00
catch (const std::invalid_argument&) { continue; }
catch (const std::out_of_range&) { continue; }
2021-06-27 11:19:57 +12:00
stat_loop_done:
pread.close();
if (x-offset < 24) continue;
//? Process cpu usage since last update
2021-08-11 06:20:33 +12:00
new_proc.cpu_p = round(cmult * 1000 * (cpu_t - cache.at(new_proc.pid).cpu_t) / max(1ul, cputimes - old_cputimes)) / 10.0;
//? Process cumulative cpu usage since process start
2021-08-11 06:20:33 +12:00
new_proc.cpu_c = (double)cpu_t / max(1.0, (uptime * Shared::clkTck) - cache.at(new_proc.pid).cpu_s);
//? Update cache with latest cpu times
2021-08-11 06:20:33 +12:00
cache.at(new_proc.pid).cpu_t = cpu_t;
if (show_detailed and not got_detailed and new_proc.pid == detailed_pid) {
got_detailed = true;
}
//? Push process to vector
procs.push_back(new_proc);
}
//* Clear dead processes from cache at a regular interval
2021-08-04 09:47:46 +12:00
if (++counter >= 1000 or (cache.size() > procs.size() + 100)) {
counter = 0;
unordered_flat_map<size_t, p_cache> r_cache;
r_cache.reserve(procs.size());
rng::for_each(procs, [&r_cache](const auto &p) {
if (cache.contains(p.pid))
r_cache[p.pid] = cache.at(p.pid);
});
cache = std::move(r_cache);
}
//* Update the details info box for process if active
if (show_detailed and got_detailed) {
_collect_details(detailed_pid, round(uptime), procs);
}
else if (show_detailed and not got_detailed and detailed.status != "Dead") {
detailed.status = "Dead";
redraw = true;
}
old_cputimes = cputimes;
current_procs = procs;
proc_no_update:
//* Match filter if defined
if (not tree and not filter.empty()) {
const auto filtered = rng::remove_if(procs, [&filter](const auto& p) {
return (not s_contains(to_string(p.pid), filter)
and not s_contains(p.name, filter)
and not s_contains(p.cmd, filter)
and not s_contains(p.user, filter));
});
procs.erase(filtered.begin(), filtered.end());
}
//* Sort processes
2021-07-21 13:17:34 +12:00
const auto cmp = [&reverse](const auto &a, const auto &b) { return (reverse ? a < b : a > b); };
2021-06-20 10:04:02 +12:00
switch (v_index(sort_vector, sorting)) {
case 0: { rng::sort(procs, cmp, &proc_info::pid); break; }
case 1: { rng::sort(procs, cmp, &proc_info::name); break; }
case 2: { rng::sort(procs, cmp, &proc_info::cmd); break; }
2021-06-20 10:04:02 +12:00
case 3: { rng::sort(procs, cmp, &proc_info::threads); break; }
case 4: { rng::sort(procs, cmp, &proc_info::user); break; }
case 5: { rng::sort(procs, cmp, &proc_info::mem); break; }
case 6: { rng::sort(procs, cmp, &proc_info::cpu_p); break; }
case 7: { rng::sort(procs, cmp, &proc_info::cpu_c); break; }
2021-06-20 10:04:02 +12:00
}
//* When sorting with "cpu lazy" push processes over threshold cpu usage to the front regardless of cumulative usage
2021-06-27 11:19:57 +12:00
if (not tree and not reverse and sorting == "cpu lazy") {
double max = 10.0, target = 30.0;
2021-07-21 13:17:34 +12:00
for (size_t i = 0, x = 0, offset = 0; i < procs.size(); i++) {
2021-08-11 06:20:33 +12:00
if (i <= 5 and procs.at(i).cpu_p > max)
max = procs.at(i).cpu_p;
else if (i == 6)
target = (max > 30.0) ? max : 10.0;
2021-08-11 06:20:33 +12:00
if (i == offset and procs.at(i).cpu_p > 30.0)
offset++;
2021-08-11 06:20:33 +12:00
else if (procs.at(i).cpu_p > target) {
2021-06-26 09:58:19 +12:00
rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1);
2021-07-21 13:17:34 +12:00
if (++x > 10) break;
}
}
}
//* Generate tree view if enabled
if (tree) {
if (collapse > -1 and collapse == expand) {
if (cache.contains(collapse)) cache.at(collapse).collapsed = not cache.at(collapse).collapsed;
collapse = expand = -1;
}
else if (collapse > -1) {
if (cache.contains(collapse)) cache.at(collapse).collapsed = true;
collapse = -1;
}
else if (expand > -1) {
if (cache.contains(expand)) cache.at(expand).collapsed = false;
expand = -1;
}
vector<proc_info> tree_procs;
tree_procs.reserve(procs.size());
2021-06-21 08:07:04 +12:00
//? Stable sort to retain selected sorting among processes with the same parent
rng::stable_sort(procs, rng::less{}, &proc_info::ppid);
2021-06-27 11:19:57 +12:00
//? Start recursive iteration over processes with the lowest shared parent pids
2021-07-21 13:17:34 +12:00
for (const auto& p : rng::equal_range(procs, procs.at(0).ppid, rng::less{}, &proc_info::ppid)) {
_tree_gen(p, procs, tree_procs, 0, false, filter);
}
2021-07-21 13:17:34 +12:00
procs = std::move(tree_procs);
}
numpids = (int)procs.size();
return procs;
}
}
2021-08-11 06:20:33 +12:00
namespace Tools {
double system_uptime() {
string upstr;
ifstream pread(Shared::procPath / "uptime");
getline(pread, upstr, ' ');
pread.close();
return stod(upstr);
}
}
#endif