btop/src/btop_linux.cpp

478 lines
14 KiB
C++
Raw Normal View History

/* Copyright 2021 Aristocratos (jakob@qvantnet.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
indent = tab
tab-size = 4
*/
#if defined(__linux__)
#include <string>
#include <vector>
#include <atomic>
#include <fstream>
#include <filesystem>
#include <ranges>
#include <list>
#include <robin_hood.h>
#include <cmath>
#include <iostream>
#include <cmath>
#include <unistd.h>
2021-06-20 10:49:13 +12:00
#include <btop_shared.hpp>
2021-06-20 08:48:31 +12:00
#include <btop_config.hpp>
#include <btop_tools.hpp>
using std::string, std::vector, std::ifstream, std::atomic, std::numeric_limits, std::streamsize,
std::round, std::string_literals::operator""s, robin_hood::unordered_flat_map;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------
namespace Tools {
double system_uptime(){
string upstr;
ifstream pread("/proc/uptime");
getline(pread, upstr, ' ');
pread.close();
return stod(upstr);
}
}
2021-06-26 09:58:19 +12:00
namespace Shared {
fs::path proc_path;
fs::path passwd_path;
fs::file_time_type passwd_time;
long page_size;
long clk_tck;
void init(){
proc_path = (fs::is_directory(fs::path("/proc")) and access("/proc", R_OK) != -1) ? "/proc" : "";
if (proc_path.empty()) {
string errmsg = "Proc filesystem not found or no permission to read from it!";
Logger::error(errmsg);
std::cout << "ERROR: " << errmsg << std::endl;
exit(1);
}
passwd_path = (access("/etc/passwd", R_OK) != -1) ? fs::path("/etc/passwd") : passwd_path;
if (passwd_path.empty()) Logger::warning("Could not read /etc/passwd, will show UID instead of username.");
page_size = sysconf(_SC_PAGE_SIZE);
if (page_size <= 0) {
page_size = 4096;
Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
}
clk_tck = sysconf(_SC_CLK_TCK);
if (clk_tck <= 0) {
clk_tck = 100;
Logger::warning("Could not get system clocks per second. Defaulting to 100, processes cpu usage might be incorrect.");
}
}
}
namespace Proc {
namespace {
struct p_cache {
string name, cmd, user;
size_t name_offset;
uint64_t cpu_t = 0, cpu_s = 0;
string prefix = "";
size_t depth = 0;
bool collapsed = false;
};
unordered_flat_map<size_t, p_cache> cache;
unordered_flat_map<string, string> uid_user;
int counter = 0;
}
uint64_t old_cputimes = 0;
size_t numpids = 500;
atomic<bool> stop (false);
atomic<bool> collecting (false);
vector<string> sort_vector = {
"pid",
"name",
"command",
"threads",
"user",
"memory",
"cpu direct",
"cpu lazy",
};
detail_container detailed;
//* Generate process tree list
void _tree_gen(const proc_info& cur_proc, const vector<proc_info>& in_procs, vector<proc_info>& out_procs, int cur_depth, const bool collapsed, const string& filter, bool found=false){
auto cur_pos = out_procs.size();
bool filtering = false;
//? If filtering, include children of matching processes
if (not filter.empty() and not found) {
if (std::to_string(cur_proc.pid).find(filter) == string::npos
and cur_proc.name.find(filter) == string::npos
and cur_proc.cmd.find(filter) == string::npos
and cur_proc.user.find(filter) == string::npos) {
filtering = true;
}
else {
found = true;
cur_depth = 0;
}
}
if (not collapsed and not filtering)
out_procs.push_back(cur_proc);
2021-06-21 08:07:04 +12:00
int children = 0;
2021-06-21 08:07:04 +12:00
for (auto& p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) {
if (collapsed and not filtering) {
2021-06-21 08:07:04 +12:00
out_procs.back().cpu_p += p.cpu_p;
out_procs.back().mem += p.mem;
out_procs.back().threads += p.threads;
}
2021-06-27 11:19:57 +12:00
else children++;
_tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cache.at(cur_proc.pid).collapsed), filter, found);
}
if (collapsed or filtering) return;
2021-06-27 11:19:57 +12:00
if (out_procs.size() > cur_pos + 1 and not out_procs.back().prefix.ends_with("] "))
out_procs.back().prefix.replace(out_procs.back().prefix.size() - 8, 8, " └─ ");
out_procs.at(cur_pos).prefix = ""s * cur_depth + (children > 0 ? (cache.at(cur_proc.pid).collapsed ? "[+] " : "[-] ") : " ├─ ");
}
//* Get datiled info for selected process
void _collect_details(proc_info p){
fs::path pid_path = Shared::proc_path / std::to_string(p.pid);
detailed.entry = p;
ifstream d_read;
//* Get RSS mem from smaps
if (fs::exists(pid_path / "smaps")) {
pid_path /= "smaps";
d_read.open(pid_path);
if (d_read.good()) {
uint64_t rss = 0;
string val;
try {
while (not d_read.eof()) {
d_read.ignore(SSmax, 'R');
if (d_read.peek() == 's') {
d_read.ignore(SSmax, ':');
getline(d_read, val, 'k');
rss += stoull(val) << 10;
}
}
detailed.entry.mem = rss;
}
catch (std::invalid_argument const&) {}
catch (std::out_of_range const&) {}
}
d_read.close();
}
}
vector<proc_info> current_procs;
//* Collects and sorts process information from /proc, saves to and returns reference to Proc::current_procs;
vector<proc_info>& collect(){
atomic_wait_set(collecting);
auto& sorting = Config::getS("proc_sorting");
auto reverse = Config::getB("proc_reversed");
auto& filter = Config::getS("proc_filter");
auto per_core = Config::getB("proc_per_core");
auto tree = Config::getB("proc_tree");
auto show_detailed = Config::getB("show_detailed");
size_t detailed_pid = Config::getI("detailed_pid");
ifstream pread;
2021-06-26 09:58:19 +12:00
string long_string;
string short_str;
auto uptime = system_uptime();
vector<proc_info> procs;
procs.reserve((numpids + 10));
int npids = 0;
int cmult = (per_core) ? Global::coreCount : 1;
bool got_detailed = false;
//* Update uid_user map if /etc/passwd changed since last run
2021-06-26 09:58:19 +12:00
if (not Shared::passwd_path.empty() and fs::last_write_time(Shared::passwd_path) != Shared::passwd_time) {
string r_uid, r_user;
2021-06-26 09:58:19 +12:00
Shared::passwd_time = fs::last_write_time(Shared::passwd_path);
uid_user.clear();
2021-06-26 09:58:19 +12:00
pread.open(Shared::passwd_path);
if (pread.good()) {
2021-06-22 08:52:55 +12:00
while (not pread.eof()){
getline(pread, r_user, ':');
pread.ignore(SSmax, ':');
getline(pread, r_uid, ':');
uid_user[r_uid] = r_user;
pread.ignore(SSmax, '\n');
}
}
pread.close();
}
//* Get cpu total times from /proc/stat
uint64_t cputimes = 0;
2021-06-26 09:58:19 +12:00
pread.open(Shared::proc_path / "stat");
if (pread.good()) {
pread.ignore(SSmax, ' ');
for (uint64_t times; pread >> times; cputimes += times);
pread.close();
}
else return current_procs;
//* Iterate over all pids in /proc
2021-06-26 09:58:19 +12:00
for (auto& d: fs::directory_iterator(Shared::proc_path)){
if (pread.is_open()) pread.close();
2021-06-23 05:19:14 +12:00
if (stop) {
collecting = false;
stop = false;
return current_procs;
}
bool new_cache = false;
string pid_str = d.path().filename();
if (not isdigit(pid_str[0])) continue;
npids++;
proc_info new_proc (stoul(pid_str));
//* Cache program name, command and username
if (not cache.contains(new_proc.pid)) {
string name, cmd, user;
new_cache = true;
pread.open(d.path() / "comm");
if (not pread.good()) continue;
getline(pread, name);
pread.close();
size_t name_offset = rng::count(name, ' ');
pread.open(d.path() / "cmdline");
if (not pread.good()) continue;
long_string.clear();
while(getline(pread, long_string, '\0')) cmd += long_string + ' ';
pread.close();
if (not cmd.empty()) cmd.pop_back();
pread.open(d.path() / "status");
if (not pread.good()) continue;
string uid;
string line;
while (not pread.eof()){
getline(pread, line, ':');
if (line == "Uid") {
pread.ignore();
getline(pread, uid, '\t');
break;
} else {
pread.ignore(SSmax, '\n');
}
}
pread.close();
user = (uid_user.contains(uid)) ? uid_user.at(uid) : uid;
cache[new_proc.pid] = {name, cmd, user, name_offset};
}
//* Match filter if defined
if (not tree and not filter.empty()
and not (show_detailed and new_proc.pid == detailed_pid)
and pid_str.find(filter) == string::npos
and cache[new_proc.pid].name.find(filter) == string::npos
and cache[new_proc.pid].cmd.find(filter) == string::npos
and cache[new_proc.pid].user.find(filter) == string::npos) {
if (new_cache) cache.erase(new_proc.pid);
continue;
}
new_proc.name = cache[new_proc.pid].name;
new_proc.cmd = cache[new_proc.pid].cmd;
new_proc.user = cache[new_proc.pid].user;
//* Parse /proc/[pid]/stat
pread.open(d.path() / "stat");
if (not pread.good()) continue;
//? Check cached value for whitespace characters in name and set offset to get correct fields from stat file
size_t& offset = cache.at(new_proc.pid).name_offset;
short_str.clear();
size_t x = 0, next_x = 3;
uint64_t cpu_t = 0;
try {
for (;;) {
while (++x - offset < next_x) {
pread.ignore(SSmax, ' ');
}
getline(pread, short_str, ' ');
switch (x-offset) {
case 3: { //? Process state
new_proc.state = short_str[0];
continue;
}
case 4: { //? Parent pid
new_proc.ppid = stoull(short_str);
next_x = 14;
continue;
}
case 14: { //? Process utime
cpu_t = stoull(short_str);
continue;
}
case 15: { //? Process stime
cpu_t += stoull(short_str);
next_x = 19;
continue;
}
case 19: { //? Nice value
new_proc.p_nice = stoull(short_str);
continue;
}
case 20: { //? Number of threads
new_proc.threads = stoull(short_str);
next_x = (new_cache) ? 22 : 24;
continue;
}
case 22: { //? Save cpu seconds to cache if missing
cache[new_proc.pid].cpu_s = stoull(short_str);
next_x = 24;
continue;
}
case 24: { //? RSS memory (can be inaccurate, but parsing smaps increases total cpu usage by ~ 20x)
new_proc.mem = stoull(short_str) * Shared::page_size;
next_x = 40;
continue;
}
case 40: { //? CPU number last executed on
new_proc.cpu_n = stoull(short_str);
goto stat_loop_done;
}
}
}
}
catch (std::invalid_argument const&) { continue; }
catch (std::out_of_range const&) { continue; }
catch (std::ios_base::failure const&) {}
2021-06-27 11:19:57 +12:00
stat_loop_done:
pread.close();
if (x-offset < 24) continue;
// _parse_smaps(new_proc);
//? Process cpu usage since last update
new_proc.cpu_p = round(cmult * 1000 * (cpu_t - cache[new_proc.pid].cpu_t) / (cputimes - old_cputimes)) / 10.0;
//? Process cumulative cpu usage since process start
new_proc.cpu_c = ((double)cpu_t / Shared::clk_tck) / (uptime - (cache[new_proc.pid].cpu_s / Shared::clk_tck));
//? Update cache with latest cpu times
cache[new_proc.pid].cpu_t = cpu_t;
//? Update the details info box for process if active
if (show_detailed and new_proc.pid == detailed_pid) {
_collect_details(new_proc);
got_detailed = true;
}
//? Push process to vector
procs.push_back(new_proc);
}
if (show_detailed and not got_detailed) {
detailed.entry.state = 'X';
}
//* Sort processes
2021-06-21 08:07:04 +12:00
auto cmp = [&reverse](const auto &a, const auto &b) { return (reverse ? a < b : a > b); };
2021-06-20 10:04:02 +12:00
switch (v_index(sort_vector, sorting)) {
case 0: { rng::sort(procs, cmp, &proc_info::pid); break; }
case 1: { rng::sort(procs, cmp, &proc_info::name); break; }
case 2: { rng::sort(procs, cmp, &proc_info::cmd); break; }
case 3: { rng::sort(procs, cmp, &proc_info::threads); break; }
case 4: { rng::sort(procs, cmp, &proc_info::user); break; }
case 5: { rng::sort(procs, cmp, &proc_info::mem); break; }
case 6: { rng::sort(procs, cmp, &proc_info::cpu_p); break; }
case 7: { rng::sort(procs, cmp, &proc_info::cpu_c); break; }
}
//* When sorting with "cpu lazy" push processes over threshold cpu usage to the front regardless of cumulative usage
2021-06-27 11:19:57 +12:00
if (not tree and not reverse and sorting == "cpu lazy") {
double max = 10.0, target = 30.0;
for (size_t i = 0, offset = 0; i < procs.size(); i++) {
2021-06-22 08:52:55 +12:00
if (i <= 5 and procs[i].cpu_p > max)
max = procs[i].cpu_p;
else if (i == 6)
target = (max > 30.0) ? max : 10.0;
2021-06-22 08:52:55 +12:00
if (i == offset and procs[i].cpu_p > 30.0)
offset++;
2021-06-26 09:58:19 +12:00
else if (procs[i].cpu_p > target)
rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1);
}
}
//* Generate tree view if enabled
if (tree) {
vector<proc_info> tree_procs;
2021-06-21 08:07:04 +12:00
//? Stable sort to retain selected sorting among processes with the same parent
rng::stable_sort(procs, rng::less{}, &proc_info::ppid);
2021-06-27 11:19:57 +12:00
//? Start recursive iteration over processes with the lowest shared parent pids
2021-06-21 08:07:04 +12:00
for (auto& p : rng::equal_range(procs, procs.at(0).ppid, rng::less{}, &proc_info::ppid)) {
_tree_gen(p, procs, tree_procs, 0, cache.at(p.pid).collapsed, filter);
}
procs.swap(tree_procs);
}
//* Clear dead processes from cache at a regular interval
2021-06-22 08:52:55 +12:00
if (++counter >= 10000 or ((int)cache.size() > npids + 100)) {
counter = 0;
unordered_flat_map<size_t, p_cache> r_cache;
2021-06-27 11:19:57 +12:00
r_cache.reserve(procs.size());
rng::for_each(procs, [&r_cache](const auto &p){
if (cache.contains(p.pid))
r_cache[p.pid] = cache.at(p.pid);
});
cache.swap(r_cache);
}
2021-06-21 08:07:04 +12:00
old_cputimes = cputimes;
current_procs.swap(procs);
numpids = npids;
2021-06-23 05:19:14 +12:00
collecting = false;
return current_procs;
}
}
#endif