tahoma2d/thirdparty/openblas/xianyi-OpenBLAS-e6e87a2/driver/others/blas_server_win32.c
2016-03-24 02:47:04 +09:00

450 lines
13 KiB
C

/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
/* This is a thread implementation for Win32 lazy implementation */
/* Thread server common infomation */
typedef struct{
CRITICAL_SECTION lock;
HANDLE filled;
HANDLE killed;
blas_queue_t *queue; /* Parameter Pointer */
int shutdown; /* server shutdown flag */
} blas_pool_t;
/* We need this grobal for cheking if initialization is finished. */
int blas_server_avail = 0;
/* Local Variables */
static BLASULONG server_lock = 0;
static blas_pool_t pool;
static HANDLE blas_threads [MAX_CPU_NUMBER];
static DWORD blas_threads_id[MAX_CPU_NUMBER];
static void legacy_exec(void *func, int mode, blas_arg_t *args, void *sb){
if (!(mode & BLAS_COMPLEX)){
#ifdef EXPRECISION
if (mode & BLAS_XDOUBLE){
/* REAL / Extended Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble,
xdouble *, BLASLONG, xdouble *, BLASLONG,
xdouble *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((xdouble *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else
#endif
if (mode & BLAS_DOUBLE){
/* REAL / Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double,
double *, BLASLONG, double *, BLASLONG,
double *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((double *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else {
/* REAL / Single */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((float *)args -> alpha)[0],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
}
} else {
#ifdef EXPRECISION
if (mode & BLAS_XDOUBLE){
/* COMPLEX / Extended Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, xdouble, xdouble,
xdouble *, BLASLONG, xdouble *, BLASLONG,
xdouble *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((xdouble *)args -> alpha)[0],
((xdouble *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else
#endif
if (mode & BLAS_DOUBLE){
/* COMPLEX / Double */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, double, double,
double *, BLASLONG, double *, BLASLONG,
double *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((double *)args -> alpha)[0],
((double *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
} else {
/* COMPLEX / Single */
void (*afunc)(BLASLONG, BLASLONG, BLASLONG, float, float,
float *, BLASLONG, float *, BLASLONG,
float *, BLASLONG, void *) = func;
afunc(args -> m, args -> n, args -> k,
((float *)args -> alpha)[0],
((float *)args -> alpha)[1],
args -> a, args -> lda,
args -> b, args -> ldb,
args -> c, args -> ldc, sb);
}
}
}
/* This is a main routine of threads. Each thread waits until job is */
/* queued. */
static DWORD WINAPI blas_thread_server(void *arg){
/* Thread identifier */
#ifdef SMP_DEBUG
BLASLONG cpu = (BLASLONG)arg;
#endif
void *buffer, *sa, *sb;
blas_queue_t *queue;
DWORD action;
HANDLE handles[] = {pool.filled, pool.killed};
/* Each server needs each buffer */
buffer = blas_memory_alloc(2);
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Thread is started!\n", cpu);
#endif
while (1){
/* Waiting for Queue */
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Waiting for Queue.\n", cpu);
#endif
do {
action = WaitForMultipleObjects(2, handles, FALSE, INFINITE);
} while ((action != WAIT_OBJECT_0) && (action == WAIT_OBJECT_0 + 1));
if (action == WAIT_OBJECT_0 + 1) break;
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Got it.\n", cpu);
#endif
EnterCriticalSection(&pool.lock);
queue = pool.queue;
if (queue) pool.queue = queue->next;
LeaveCriticalSection(&pool.lock);
if (queue) {
int (*routine)(blas_arg_t *, void *, void *, void *, void *, BLASLONG) = queue -> routine;
if (pool.queue) SetEvent(pool.filled);
sa = queue -> sa;
sb = queue -> sb;
#ifdef CONSISTENT_FPCSR
__asm__ __volatile__ ("ldmxcsr %0" : : "m" (queue -> sse_mode));
__asm__ __volatile__ ("fldcw %0" : : "m" (queue -> x87_mode));
#endif
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Started. Mode = 0x%03x M = %3ld N=%3ld K=%3ld\n",
cpu, queue->mode, queue-> args ->m, queue->args->n, queue->args->k);
#endif
// fprintf(stderr, "queue start[%ld]!!!\n", cpu);
#ifdef MONITOR
main_status[cpu] = MAIN_RUNNING1;
#endif
if (sa == NULL) sa = (void *)((BLASLONG)buffer + GEMM_OFFSET_A);
if (sb == NULL) {
if (!(queue -> mode & BLAS_COMPLEX)){
#ifdef EXPRECISION
if (queue -> mode & BLAS_XDOUBLE){
sb = (void *)(((BLASLONG)sa + ((XGEMM_P * XGEMM_Q * sizeof(xdouble)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else
#endif
if (queue -> mode & BLAS_DOUBLE){
sb = (void *)(((BLASLONG)sa + ((DGEMM_P * DGEMM_Q * sizeof(double)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else {
sb = (void *)(((BLASLONG)sa + ((SGEMM_P * SGEMM_Q * sizeof(float)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
}
} else {
#ifdef EXPRECISION
if (queue -> mode & BLAS_XDOUBLE){
sb = (void *)(((BLASLONG)sa + ((XGEMM_P * XGEMM_Q * 2 * sizeof(xdouble)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else
#endif
if (queue -> mode & BLAS_DOUBLE){
sb = (void *)(((BLASLONG)sa + ((ZGEMM_P * ZGEMM_Q * 2 * sizeof(double)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
} else {
sb = (void *)(((BLASLONG)sa + ((CGEMM_P * CGEMM_Q * 2 * sizeof(float)
+ GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
}
}
}
#ifdef MONITOR
main_status[cpu] = MAIN_RUNNING2;
#endif
if (!(queue -> mode & BLAS_LEGACY)) {
(routine)(queue -> args, queue -> range_m, queue -> range_n, sa, sb, queue -> position);
} else {
legacy_exec(routine, queue -> mode, queue -> args, sb);
}
}
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Finished!\n", cpu);
#endif
EnterCriticalSection(&queue->lock);
queue -> status = BLAS_STATUS_FINISHED;
LeaveCriticalSection(&queue->lock);
SetEvent(queue->finish);
}
/* Shutdown procedure */
#ifdef SMP_DEBUG
fprintf(STDERR, "Server[%2ld] Shutdown!\n", cpu);
#endif
blas_memory_free(buffer);
return 0;
}
/* Initializing routine */
int blas_thread_init(void){
BLASLONG i;
if (blas_server_avail || (blas_cpu_number <= 1)) return 0;
LOCK_COMMAND(&server_lock);
#ifdef SMP_DEBUG
fprintf(STDERR, "Initializing Thread(Num. threads = %d)\n",
blas_cpu_number);
#endif
if (!blas_server_avail){
InitializeCriticalSection(&pool.lock);
pool.filled = CreateEvent(NULL, FALSE, FALSE, NULL);
pool.killed = CreateEvent(NULL, TRUE, FALSE, NULL);
pool.shutdown = 0;
pool.queue = NULL;
for(i = 0; i < blas_cpu_number - 1; i++){
blas_threads[i] = CreateThread(NULL, 0,
blas_thread_server, (void *)i,
0, &blas_threads_id[i]);
}
blas_server_avail = 1;
}
UNLOCK_COMMAND(&server_lock);
return 0;
}
/*
User can call one of two routines.
exec_blas_async ... immediately returns after jobs are queued.
exec_blas ... returns after jobs are finished.
*/
int exec_blas_async(BLASLONG pos, blas_queue_t *queue){
blas_queue_t *current;
current = queue;
while (current) {
InitializeCriticalSection(&current -> lock);
current -> finish = CreateEvent(NULL, FALSE, FALSE, NULL);
current -> position = pos;
#ifdef CONSISTENT_FPCSR
__asm__ __volatile__ ("fnstcw %0" : "=m" (current -> x87_mode));
__asm__ __volatile__ ("stmxcsr %0" : "=m" (current -> sse_mode));
#endif
current = current -> next;
pos ++;
}
EnterCriticalSection(&pool.lock);
if (pool.queue) {
current = pool.queue;
while (current -> next) current = current -> next;
current -> next = queue;
} else {
pool.queue = queue;
}
LeaveCriticalSection(&pool.lock);
SetEvent(pool.filled);
return 0;
}
int exec_blas_async_wait(BLASLONG num, blas_queue_t *queue){
#ifdef SMP_DEBUG
fprintf(STDERR, "Synchronization Waiting.\n");
#endif
while (num){
#ifdef SMP_DEBUG
fprintf(STDERR, "Waiting Queue ..\n");
#endif
WaitForSingleObject(queue->finish, INFINITE);
CloseHandle(queue->finish);
DeleteCriticalSection(&queue -> lock);
queue = queue -> next;
num --;
}
#ifdef SMP_DEBUG
fprintf(STDERR, "Completely Done.\n\n");
#endif
return 0;
}
/* Execute Threads */
int exec_blas(BLASLONG num, blas_queue_t *queue){
#ifndef ALL_THREADED
int (*routine)(blas_arg_t *, void *, void *, double *, double *, BLASLONG);
#endif
if ((num <= 0) || (queue == NULL)) return 0;
if ((num > 1) && queue -> next) exec_blas_async(1, queue -> next);
routine = queue -> routine;
if (!(queue -> mode & BLAS_LEGACY)) {
(routine)(queue -> args, queue -> range_m, queue -> range_n,
queue -> sa, queue -> sb, 0);
} else {
legacy_exec(routine, queue -> mode, queue -> args, queue -> sb);
}
if ((num > 1) && queue -> next) exec_blas_async_wait(num - 1, queue -> next);
return 0;
}
/* Shutdown procedure, but user don't have to call this routine. The */
/* kernel automatically kill threads. */
int blas_thread_shutdown_(void){
int i;
if (!blas_server_avail) return 0;
LOCK_COMMAND(&server_lock);
if (blas_server_avail){
SetEvent(pool.killed);
for(i = 0; i < blas_cpu_number - 1; i++){
WaitForSingleObject(blas_threads[i], INFINITE);
}
blas_server_avail = 0;
}
UNLOCK_COMMAND(&server_lock);
return 0;
}