tahoma2d/toonz/sources/stdfx/iwa_glarefx.cpp
2023-02-25 20:59:02 -05:00

1038 lines
No EOL
37 KiB
C++

#include "iwa_glarefx.h"
#include "trop.h"
#include "tdoubleparam.h"
#include "trasterfx.h"
#include "trasterimage.h"
#include "tparamuiconcept.h"
#include "kiss_fft.h"
#include "iwa_cie_d65.h"
#include "iwa_xyz.h"
#include "iwa_simplexnoise.h"
#include <random>
#include <QPair>
#include <QVector>
#include <QReadWriteLock>
#include <QMutexLocker>
#include <QMap>
#include <QImage>
#include <QPainter>
namespace {
// FFT coordinate -> Normal corrdinate
inline int getCoord(int i, int j, int lx, int ly) {
int cx = i - lx / 2;
int cy = j - ly / 2;
if (cx < 0) cx += lx;
if (cy < 0) cy += ly;
return cy * lx + cx;
}
}; // namespace
//--------------------------------------------
// Iwa_GlareFx
//--------------------------------------------
Iwa_GlareFx::Iwa_GlareFx()
: m_renderMode(
new TIntEnumParam(RenderMode_FilterPreview, "Filter Preview"))
, m_irisMode(new TIntEnumParam(Iris_InputImage, "Input Image"))
, m_irisScale(0.2)
, m_irisGearEdgeCount(10)
, m_irisRandomSeed(0)
, m_irisSymmetry(1.0)
, m_irisAppearance(new TIntEnumParam())
, m_intensity(0.0)
, m_size(100.0)
, m_rotation(0.0)
, m_aberration(1.0)
, m_noise_factor(0.0)
, m_noise_size(0.5)
, m_noise_octave(new TIntEnumParam(1, "1"))
, m_noise_evolution(0.0)
, m_noise_offset(TPointD(0, 0)) {
// Version 1 : lights had been constantly summed in all wavelength
// Version 2 : intensities are weighted proportional to 1/(rambda^2)
// Version 3 : * 1/2.2 gamma to intensity when non-linear rendering
// Source image is separated in each RGB channels
// Filter is normalized with sum of green channel values
setFxVersion(3);
// Bind the common parameters
addInputPort("Source", m_source);
addInputPort("Iris", m_iris);
bindParam(this, "renderMode", m_renderMode);
m_renderMode->addItem(RenderMode_Render, "Render");
m_renderMode->addItem(RenderMode_Iris, "Iris");
bindParam(this, "irisMode", m_irisMode);
m_irisMode->addItem(Iris_Square, "4 Streaks");
m_irisMode->addItem(Iris_Hexagon, "6 Streaks");
m_irisMode->addItem(Iris_Octagon, "8 Streaks");
m_irisMode->addItem(Iris_GearShape, "Multiple Streaks");
bindParam(this, "irisScale", m_irisScale);
bindParam(this, "irisGearEdgeCount", m_irisGearEdgeCount);
bindParam(this, "irisRandomSeed", m_irisRandomSeed);
bindParam(this, "irisSymmetry", m_irisSymmetry);
bindParam(this, "irisAppearance", m_irisAppearance);
m_irisAppearance->addItem(Appearance_ThinLine, "Thin Line");
m_irisAppearance->addItem(Appearance_MediumLine, "Medium Line");
m_irisAppearance->addItem(Appearance_ThickLine, "Thick Line");
m_irisAppearance->addItem(Appearance_Fill, "Filled");
m_irisAppearance->setValue(Appearance_MediumLine);
bindParam(this, "intensity", m_intensity, false);
bindParam(this, "size", m_size, false);
m_size->setMeasureName("fxLength");
bindParam(this, "rotation", m_rotation, false);
bindParam(this, "aberration", m_aberration, false);
bindParam(this, "noise_factor", m_noise_factor, false);
bindParam(this, "noise_size", m_noise_size, false);
bindParam(this, "noise_octave", m_noise_octave, false);
m_noise_octave->addItem(2, "2");
m_noise_octave->addItem(3, "3");
bindParam(this, "noise_evolution", m_noise_evolution, false);
bindParam(this, "noise_offset", m_noise_offset, false);
m_noise_offset->getX()->setMeasureName("fxLength");
m_noise_offset->getY()->setMeasureName("fxLength");
m_irisScale->setValueRange(0.1, 0.8);
m_irisGearEdgeCount->setValueRange(3, 50);
m_irisSymmetry->setValueRange(0.1, 1.0);
m_irisRandomSeed->setValueRange(0, (std::numeric_limits<int>::max)());
m_intensity->setValueRange(-5.0, 5.0);
m_size->setValueRange(10.0, 1500.0);
m_rotation->setValueRange(-1800, 1800);
m_aberration->setValueRange(-2.0, 2.0);
m_noise_factor->setValueRange(0.0, 1.0);
m_noise_size->setValueRange(0.01, 3.0);
enableComputeInFloat(true);
}
//--------------------------------------------------------------
double Iwa_GlareFx::getSizePixelAmount(const double val, const TAffine affine) {
/*--- Convert to vector --- */
TPointD vect;
vect.x = val;
vect.y = 0.0;
/*--- Apply geometrical transformation ---*/
// For the following lines I referred to lines 586-592 of
// sources/stdfx/motionblurfx.cpp
TAffine aff(affine);
aff.a13 = aff.a23 = 0; /* ignore translation */
vect = aff * vect;
/*--- return the length of the vector ---*/
return sqrt(vect.x * vect.x + vect.y * vect.y);
}
//--------------------------------------------------------------
void Iwa_GlareFx::drawPresetIris(TRaster32P irisRas, double irisSize,
const double frame) {
QImage img(irisRas->getLx(), irisRas->getLy(),
QImage::Format_ARGB32_Premultiplied);
img.fill(Qt::black);
QPainter painter(&img);
painter.setRenderHint(QPainter::Antialiasing, true);
painter.translate(
QPointF((float)irisRas->getLx() / 2.0, (float)irisRas->getLy() / 2.0));
painter.scale(irisSize, irisSize);
// shrink a bit
painter.scale(0.9, 0.9);
QPen pen(Qt::white);
double lineWidthRatio;
int appearance = m_irisAppearance->getValue();
if (appearance == Appearance_Fill) {
painter.setPen(Qt::NoPen);
painter.setBrush(Qt::white);
} else {
assert(appearance >= 0 && appearance <= 2);
pen.setCapStyle(Qt::RoundCap);
pen.setJoinStyle(Qt::MiterJoin);
double ratio[3] = {0.05, 0.1, 0.2};
lineWidthRatio = ratio[appearance];
pen.setWidthF(lineWidthRatio);
painter.setPen(pen);
painter.setBrush(Qt::NoBrush);
}
double symmetry = m_irisSymmetry->getValue(frame);
switch (m_irisMode->getValue()) {
case Iris_Square:
painter.scale(1.0, symmetry);
painter.drawRect(QRectF(-1.0, -1.0, 2.0, 2.0));
break;
case Iris_Hexagon: {
QPointF p(1.0 - 0.5 * symmetry, symmetry * std::sqrt(3) * 0.5);
const QPointF points[6] = {-p, QPointF(-1.0, 0.0), QPointF(-p.x(), p.y()),
p, QPointF(1.0, 0.0), QPointF(p.x(), -p.y())};
if (appearance != Appearance_Fill) {
if (symmetry < 1.0) {
painter.drawPolyline(points, 3);
painter.drawPolyline(&points[3], 3);
}
pen.setWidthF(lineWidthRatio * symmetry);
painter.setPen(pen);
}
painter.drawPolygon(points, 6);
if (appearance != Appearance_Fill && symmetry < 1.0) {
pen.setColor(Qt::black);
painter.setPen(pen);
painter.setBrush(Qt::NoBrush);
painter.drawRect(
QRectF(-1.2, -p.y() - symmetry, 2.4, (p.y() + symmetry) * 2.0));
}
} break;
case Iris_Octagon: {
double u = (2 + std::sqrt(2) * (1 - symmetry)) / (2 * std::sqrt(2) + 2);
double v = (2 + std::sqrt(2) * (1 + symmetry)) / (2 * std::sqrt(2) + 2);
const QPointF points[8] = {QPointF(u, v), QPointF(v, u), QPointF(v, -u),
QPointF(u, -v), QPointF(-u, -v), QPointF(-v, -u),
QPointF(-v, u), QPointF(-u, v)};
if (appearance != Appearance_Fill) {
if (symmetry < 1.0) {
painter.drawLine(points[0], points[1]);
painter.drawLine(points[2], points[3]);
painter.drawLine(points[4], points[5]);
painter.drawLine(points[6], points[7]);
}
pen.setWidthF(lineWidthRatio * symmetry);
painter.setPen(pen);
}
painter.drawPolygon(points, 8);
if (appearance != Appearance_Fill && symmetry < 1.0) {
pen.setColor(Qt::black);
painter.setPen(pen);
painter.setBrush(Qt::NoBrush);
painter.drawRect(QRectF(-v - symmetry, -v - symmetry,
(v + symmetry) * 2.0, (v + symmetry) * 2.0));
}
} break;
case Iris_GearShape: {
int edgeCount = (int)std::round(m_irisGearEdgeCount->getValue(frame));
QPointF* points = new QPointF[edgeCount * 2];
QList<double> thickness;
double angleUnit = M_PI / (double)edgeCount;
std::mt19937_64 mt;
mt.seed(m_irisRandomSeed->getValue());
std::uniform_real_distribution<> random_plusminus1(-1.0, 1.0);
std::uniform_real_distribution<> random_thickness(symmetry * lineWidthRatio,
lineWidthRatio);
for (int e = 0; e < edgeCount; e++) {
double baseAngle = angleUnit * e * 2.0;
double theta =
baseAngle + random_plusminus1(mt) * angleUnit * (1.0 - symmetry);
points[e * 2] = QPointF(std::cos(theta), std::sin(theta));
thickness.append(random_thickness(mt));
baseAngle += angleUnit;
theta = baseAngle + random_plusminus1(mt) * angleUnit * (1.0 - symmetry);
points[e * 2 + 1] = QPointF(0.5 * std::cos(theta), 0.5 * std::sin(theta));
thickness.append(random_thickness(mt));
}
if (appearance != Appearance_Fill) {
for (int v = 0; v < edgeCount * 2; v++) {
int next_v = (v == edgeCount * 2 - 1) ? 0 : v + 1;
pen.setWidthF(thickness.at(v));
painter.setPen(pen);
painter.drawLine(points[v], points[next_v]);
}
} else {
painter.drawPolygon(points, edgeCount * 2);
}
delete[] points;
} break;
default:
break;
}
for (int j = 0; j < img.height(); j++) {
TPixel32* pix = irisRas->pixels(j);
QRgb* img_p = (QRgb*)img.scanLine(img.height() - j - 1);
for (int i = 0; i < img.width(); i++, img_p++, pix++) {
pix->r = (unsigned char)(qRed(*img_p));
pix->g = (unsigned char)(qGreen(*img_p));
pix->b = (unsigned char)(qBlue(*img_p));
pix->m = (unsigned char)(qAlpha(*img_p));
}
}
}
//--------------------------------------------------------------
void Iwa_GlareFx::doCompute(TTile& tile, double frame,
const TRenderSettings& settings) {
int irisMode = m_irisMode->getValue();
// If the iris is not connected, then do nothing
if (irisMode == Iris_InputImage && !m_iris.isConnected()) {
tile.getRaster()->clear();
return;
}
int renderMode = m_renderMode->getValue();
// If the source is not connected & it is render mode, then do nothing.
if (!m_source.isConnected() && renderMode == RenderMode_Render) {
tile.getRaster()->clear();
return;
}
// Get the original size of Iris image
TRectD irisBBox;
TTile irisTile;
TRasterP irisRas;
double size = getSizePixelAmount(m_size->getValue(frame), settings.m_affine);
if (irisMode == Iris_InputImage) {
m_iris->getBBox(frame, irisBBox, settings);
// Compute the iris tile.
m_iris->allocateAndCompute(
irisTile, irisBBox.getP00(),
TDimension(static_cast<int>(irisBBox.getLx() + 0.5),
static_cast<int>(irisBBox.getLy() + 0.5)),
tile.getRaster(), frame, settings);
irisRas = irisTile.getRaster();
} else {
// obtain iris bbox based on the glare pattern size
double irisSize = size * m_irisScale->getValue(frame);
irisBBox = TRectD(-irisSize, -irisSize, irisSize, irisSize);
int dimIrisRas = int(std::ceil(irisSize) * 2.0);
irisRas = TRaster32P(dimIrisRas, dimIrisRas);
drawPresetIris(irisRas, irisSize, frame);
}
if (renderMode == RenderMode_Iris) {
TTranslation aff(
(double)(tile.getRaster()->getLx() - irisRas->getLx()) * 0.5,
(double)(tile.getRaster()->getLy() - irisRas->getLy()) * 0.5);
TRop::quickPut(tile.getRaster(), irisRas, aff);
return;
}
int dimIris = int(std::ceil(size) * 2.0);
dimIris = kiss_fft_next_fast_size(dimIris);
while ((tile.getRaster()->getSize().lx - dimIris) % 2 != 0)
dimIris = kiss_fft_next_fast_size(dimIris + 1);
double irisResizeFactor = double(dimIris) * 0.5 / size;
bool isLinear = tile.getRaster()->isLinear();
kiss_fft_cpx* kissfft_comp_iris;
// create the iris data for FFT (in the same size as the source tile)
TRasterGR8P kissfft_comp_iris_ras(dimIris * sizeof(kiss_fft_cpx), dimIris);
kissfft_comp_iris_ras->lock();
kissfft_comp_iris = (kiss_fft_cpx*)kissfft_comp_iris_ras->getRawData();
{
// Create the Iris image for FFT
kiss_fft_cpx* kissfft_comp_iris_before;
TRasterGR8P kissfft_comp_iris_before_ras(dimIris * sizeof(kiss_fft_cpx),
dimIris);
kissfft_comp_iris_before_ras->lock();
kissfft_comp_iris_before =
(kiss_fft_cpx*)kissfft_comp_iris_before_ras->getRawData();
convertIris(kissfft_comp_iris_before, dimIris, irisBBox, irisRas);
// Create the FFT plan for the iris image.
kiss_fftnd_cfg iris_kissfft_plan;
while (1) {
int dims[2] = {dimIris, dimIris};
int ndims = 2;
iris_kissfft_plan = kiss_fftnd_alloc(dims, ndims, false, 0, 0);
if (iris_kissfft_plan != NULL) break;
}
// Do FFT the iris image.
kiss_fftnd(iris_kissfft_plan, kissfft_comp_iris_before, kissfft_comp_iris);
kiss_fft_free(iris_kissfft_plan);
kissfft_comp_iris_before_ras->unlock();
}
double3* glare_pattern;
TRasterGR8P glare_pattern_ras(dimIris * sizeof(double3), dimIris);
glare_pattern = (double3*)glare_pattern_ras->getRawData();
glare_pattern_ras->lock();
// Resize the power spectrum according to each wavelength and combine into the
// glare pattern
double intensity = m_intensity->getValue(frame);
powerSpectrum2GlarePattern(frame, settings.m_affine, kissfft_comp_iris,
glare_pattern, dimIris, intensity,
irisResizeFactor);
kissfft_comp_iris_ras->unlock();
// clear the raster memory
tile.getRaster()->clear();
TRaster32P ras32 = tile.getRaster();
TRaster64P ras64 = tile.getRaster();
TRasterFP rasF = tile.getRaster();
// if (ras32)
// ras32->fill(TPixel32::Transparent);
// else if (ras64)
// ras64->fill(TPixel64::Transparent);
// else if (rasF)
// rasF->fill(TPixelF::Transparent);
// filter preview mode
if (renderMode == RenderMode_FilterPreview) {
int2 margin = {(dimIris - tile.getRaster()->getSize().lx) / 2,
(dimIris - tile.getRaster()->getSize().ly) / 2};
if (ras32)
setFilterPreviewToResult<TRaster32P, TPixel32>(ras32, glare_pattern,
dimIris, margin);
else if (ras64)
setFilterPreviewToResult<TRaster64P, TPixel64>(ras64, glare_pattern,
dimIris, margin);
else if (rasF)
setFilterPreviewToResult<TRasterFP, TPixelF>(rasF, glare_pattern, dimIris,
margin);
if (getFxVersion() >= 3 && !isLinear) {
tile.getRaster()->setLinear(true);
TRop::tosRGB(tile.getRaster(), settings.m_colorSpaceGamma);
}
return;
}
// render mode
// Range of computation
TRectD _rectOut(tile.m_pos, TDimensionD(tile.getRaster()->getLx(),
tile.getRaster()->getLy()));
_rectOut = _rectOut.enlarge(static_cast<double>(dimIris / 2));
TDimensionI dimOut(static_cast<int>(_rectOut.getLx() + 0.5),
static_cast<int>(_rectOut.getLy() + 0.5));
// Enlarge the size to the "fast size" for kissfft which has no factors other
// than 2,3, or 5.
if (dimOut.lx < 10000 && dimOut.ly < 10000) {
int new_x = kiss_fft_next_fast_size(dimOut.lx);
int new_y = kiss_fft_next_fast_size(dimOut.ly);
// margin should be integer
while ((new_x - dimOut.lx) % 2 != 0)
new_x = kiss_fft_next_fast_size(new_x + 1);
while ((new_y - dimOut.ly) % 2 != 0)
new_y = kiss_fft_next_fast_size(new_y + 1);
_rectOut = _rectOut.enlarge(static_cast<double>(new_x - dimOut.lx) / 2.0,
static_cast<double>(new_y - dimOut.ly) / 2.0);
dimOut.lx = new_x;
dimOut.ly = new_y;
}
kiss_fft_cpx* kissfft_comp_tmp;
kiss_fft_cpx* kissfft_comp_glare;
kiss_fft_cpx* kissfft_comp_source;
TRasterGR8P kissfft_comp_tmp_ras(dimOut.lx * sizeof(kiss_fft_cpx), dimOut.ly);
TRasterGR8P kissfft_comp_glare_ras(dimOut.lx * sizeof(kiss_fft_cpx),
dimOut.ly);
TRasterGR8P kissfft_comp_source_ras(dimOut.lx * sizeof(kiss_fft_cpx),
dimOut.ly);
kissfft_comp_tmp = (kiss_fft_cpx*)kissfft_comp_tmp_ras->getRawData();
kissfft_comp_glare = (kiss_fft_cpx*)kissfft_comp_glare_ras->getRawData();
kissfft_comp_source = (kiss_fft_cpx*)kissfft_comp_source_ras->getRawData();
kissfft_comp_tmp_ras->lock();
kissfft_comp_glare_ras->lock();
kissfft_comp_source_ras->lock();
int dims[2] = {dimOut.ly, dimOut.lx};
int ndims = 2;
kiss_fftnd_cfg plan_fwd = kiss_fftnd_alloc(dims, ndims, false, 0, 0);
kiss_fftnd_cfg plan_bkwd = kiss_fftnd_alloc(dims, ndims, true, 0, 0);
// obtain the source tile
TTile sourceTile;
m_source->allocateAndCompute(sourceTile, _rectOut.getP00(), dimOut,
tile.getRaster(), frame, settings);
if (getFxVersion() >= 3 && !isLinear)
TRop::toLinearRGB(sourceTile.getRaster(), settings.m_colorSpaceGamma);
// store the source image to tmp
if (getFxVersion() < 3) {
if (ras32)
setSourceTileToBuffer<TRaster32P, TPixel32>(sourceTile.getRaster(),
kissfft_comp_tmp);
else if (ras64)
setSourceTileToBuffer<TRaster64P, TPixel64>(sourceTile.getRaster(),
kissfft_comp_tmp);
else if (rasF)
setSourceTileToBuffer<TRasterFP, TPixelF>(sourceTile.getRaster(),
kissfft_comp_tmp);
// FFT the source
kiss_fftnd(plan_fwd, kissfft_comp_tmp, kissfft_comp_source);
}
// compute for each rgb channels
for (int ch = 0; ch < 3; ch++) {
// store the source image to tmp for each channel
if (getFxVersion() >= 3) {
if (ras32)
setSourceTileToBuffer<TRaster32P, TPixel32>(sourceTile.getRaster(),
kissfft_comp_tmp, ch);
else if (ras64)
setSourceTileToBuffer<TRaster64P, TPixel64>(sourceTile.getRaster(),
kissfft_comp_tmp, ch);
else if (rasF)
setSourceTileToBuffer<TRasterFP, TPixelF>(sourceTile.getRaster(),
kissfft_comp_tmp, ch);
// FFT the source
kiss_fftnd(plan_fwd, kissfft_comp_tmp, kissfft_comp_source);
}
kissfft_comp_tmp_ras->clear();
// store the glare pattern to tmp
setGlarePatternToBuffer(glare_pattern, kissfft_comp_tmp, ch, dimIris,
dimOut);
// FFT the glare pattern
kiss_fftnd(plan_fwd, kissfft_comp_tmp, kissfft_comp_glare);
// multiply the glare and the source
multiplyFilter(kissfft_comp_glare, kissfft_comp_source,
dimOut.lx * dimOut.ly);
// Backward-FFT the glare pattern to tmp
kiss_fftnd(plan_bkwd, kissfft_comp_glare,
kissfft_comp_tmp); // Backward FFT
// convert tmp to channel values, store it into the tile
if (ras32)
setChannelToResult<TRaster32P, TPixel32>(ras32, kissfft_comp_tmp, ch,
dimOut);
else if (ras64)
setChannelToResult<TRaster64P, TPixel64>(ras64, kissfft_comp_tmp, ch,
dimOut);
else if (rasF)
setChannelToResult<TRasterFP, TPixelF>(rasF, kissfft_comp_tmp, ch,
dimOut);
}
if (getFxVersion() >= 3 && !isLinear) {
tile.getRaster()->setLinear(true);
TRop::tosRGB(tile.getRaster(), settings.m_colorSpaceGamma);
}
kiss_fft_free(plan_fwd);
kiss_fft_free(plan_bkwd);
kissfft_comp_source_ras->unlock();
kissfft_comp_glare_ras->unlock();
}
//------------------------------------------------
void Iwa_GlareFx::powerSpectrum2GlarePattern(
const double frame, const TAffine affine, kiss_fft_cpx* spectrum,
double3* glare, int dimIris, double intensity, double irisResizeFactor) {
auto lerp = [](double val1, double val2, double ratio) {
return val1 * (1.0 - ratio) + val2 * ratio;
};
auto lerpGlarePtn = [&](double i, double j, double* gp) {
int iId[2], jId[2];
double iRatio, jRatio;
iId[0] = int(i);
iId[1] = (iId[0] < dimIris - 1) ? iId[0] + 1 : iId[0];
iRatio = i - double(iId[0]);
jId[0] = int(j);
jId[1] = (jId[0] < dimIris - 1) ? jId[0] + 1 : jId[0];
jRatio = j - double(jId[0]);
if (iRatio == 0.0 && jRatio == 0.0) return gp[jId[0] * dimIris + iId[0]];
return lerp(lerp(gp[jId[0] * dimIris + iId[0]],
gp[jId[0] * dimIris + iId[1]], iRatio),
lerp(gp[jId[1] * dimIris + iId[0]],
gp[jId[1] * dimIris + iId[1]], iRatio),
jRatio);
};
double factor =
(m_renderMode->getValue() == RenderMode_FilterPreview) ? -5 : -11;
double* glarePattern_p;
TRasterGR8P glarePattern_ras(dimIris * sizeof(double), dimIris);
glarePattern_p = (double*)glarePattern_ras->getRawData();
glarePattern_ras->lock();
double* g_p = glarePattern_p;
double intensityFactor =
(getFxVersion() < 3) ? std::exp(intensity + factor) : 1.0;
for (int j = 0; j < dimIris; j++) {
for (int i = 0; i < dimIris; i++, g_p++) {
kiss_fft_cpx sp_p = spectrum[getCoord(i, j, dimIris, dimIris)];
(*g_p) = sqrt(sp_p.r * sp_p.r + sp_p.i * sp_p.i) * intensityFactor;
}
}
// distort the pattern with noise here
double noise_factor = m_noise_factor->getValue(frame);
double rotation = m_rotation->getValue(frame);
if (noise_factor > 0.0 || m_rotation != 0.0) {
distortGlarePattern(frame, affine, glarePattern_p, dimIris);
}
double3* glare_xyz;
TRasterGR8P glare_xyz_ras(dimIris * sizeof(double3), dimIris);
glare_xyz_ras->lock();
glare_xyz = (double3*)glare_xyz_ras->getRawData();
glare_xyz_ras->clear();
double irisRadius = double(dimIris / 2);
double aberration = m_aberration->getValue(frame);
// old version had summed each wavelength constantly.
// it was not physically-collect but keep it in order to maintain backward
// compatibility.
bool isVersion1 = getFxVersion() < 2;
// accumurate xyz values for each optical wavelength
for (int ram = 0; ram < 34; ram++) {
double rambda = 0.38 + 0.01 * (double)ram;
// double scale = 0.55 / rambda;
double scale = std::pow(0.55 / rambda, aberration);
double intensity_scale =
(isVersion1) ? 1.0 : std::pow(0.55 / rambda, 2.0 * aberration);
scale *= irisResizeFactor;
for (int j = 0; j < dimIris; j++) {
double j_scaled = (double(j) - irisRadius) * scale + irisRadius;
if (j_scaled < 0)
continue;
else if (j_scaled > double(dimIris - 1))
break;
double3* g_xyz_p = &glare_xyz[j * dimIris];
for (int i = 0; i < dimIris; i++, g_xyz_p++) {
double i_scaled = (double(i) - irisRadius) * scale + irisRadius;
if (i_scaled < 0)
continue;
else if (i_scaled > double(dimIris - 1))
break;
double gl =
lerpGlarePtn(i_scaled, j_scaled, glarePattern_p) * intensity_scale;
g_xyz_p->x += gl * (double)cie_d65[ram] * (double)xyz[ram * 3 + 0];
g_xyz_p->y += gl * (double)cie_d65[ram] * (double)xyz[ram * 3 + 1];
g_xyz_p->z += gl * (double)cie_d65[ram] * (double)xyz[ram * 3 + 2];
}
}
}
glarePattern_ras->unlock();
// convert to rgb
double3* g_xyz_p = glare_xyz;
double3* g_out_p = glare;
double max_g = 0.;
double sum_g = 0.;
for (int i = 0; i < dimIris * dimIris; i++, g_xyz_p++, g_out_p++) {
(*g_out_p).x = 3.240479 * (*g_xyz_p).x - 1.537150 * (*g_xyz_p).y -
0.498535 * (*g_xyz_p).z;
(*g_out_p).y = -0.969256 * (*g_xyz_p).x + 1.875992 * (*g_xyz_p).y +
0.041556 * (*g_xyz_p).z;
(*g_out_p).z = 0.055648 * (*g_xyz_p).x - 0.204043 * (*g_xyz_p).y +
1.057311 * (*g_xyz_p).z;
// get the maximum and sum the green channel
if ((*g_out_p).y > max_g) max_g = (*g_out_p).y;
sum_g += (*g_out_p).y;
}
if (getFxVersion() >= 3) {
double intensityFactor = std::exp(intensity);
// normalize with the brightest green channel
if (m_renderMode->getValue() == RenderMode_FilterPreview)
intensityFactor /= max_g;
// normalize with the sum of the intensity
else
intensityFactor /= sum_g;
g_out_p = glare;
for (int i = 0; i < dimIris * dimIris; i++, g_out_p++) {
(*g_out_p).x *= intensityFactor;
(*g_out_p).y *= intensityFactor;
(*g_out_p).z *= intensityFactor;
}
}
glare_xyz_ras->unlock();
}
//------------------------------------------------
void Iwa_GlareFx::distortGlarePattern(const double frame, const TAffine affine,
double* glare, const int dimIris) {
auto lerp = [](double val1, double val2, double ratio) {
return val1 * (1.0 - ratio) + val2 * ratio;
};
auto lerpGlarePtn = [&](double i, double j, double* gp) {
int iId[2], jId[2];
double iRatio, jRatio;
iId[0] = int(i);
iId[1] = (iId[0] < dimIris - 1) ? iId[0] + 1 : iId[0];
iRatio = i - double(iId[0]);
jId[0] = int(j);
jId[1] = (jId[0] < dimIris - 1) ? jId[0] + 1 : jId[0];
jRatio = j - double(jId[0]);
if (iRatio == 0.0 && jRatio == 0.0) return gp[jId[0] * dimIris + iId[0]];
return lerp(lerp(gp[jId[0] * dimIris + iId[0]],
gp[jId[0] * dimIris + iId[1]], iRatio),
lerp(gp[jId[1] * dimIris + iId[0]],
gp[jId[1] * dimIris + iId[1]], iRatio),
jRatio);
};
double size = m_noise_size->getValue(frame);
double evolution = m_noise_evolution->getValue(frame);
int octave = m_noise_octave->getValue();
double noiseFactor = m_noise_factor->getValue(frame);
double offsetFactor = 0.005;
TPointD offset =
TScale(offsetFactor) * affine * m_noise_offset->getValue(frame);
double theta = m_rotation->getValue(frame) * M_PI_180;
double cos_t = std::cos(theta);
double sin_t = std::sin(theta);
QList<double> noise_intensity;
double intensity_sum = 0.0;
double tmp_intensity = 1.0;
for (int i = 0; i < octave; i++) {
noise_intensity.append(tmp_intensity);
intensity_sum += tmp_intensity;
tmp_intensity *= 0.5;
}
for (double& n_i : noise_intensity) n_i /= intensity_sum;
// raster for storing the result
double* distortedPtn_p;
TRasterGR8P distortedPtn_ras(dimIris * sizeof(double), dimIris);
distortedPtn_p = (double*)distortedPtn_ras->getRawData();
distortedPtn_ras->lock();
double* dist_p = distortedPtn_p;
for (int j = 0; j < dimIris; j++) {
double v = double(j) - double(dimIris) / 2.0;
for (int i = 0; i < dimIris; i++, dist_p++) {
double u = double(i) - double(dimIris) / 2.0;
// obtain the noise coordinate
double2 noiseUV;
double len = std::sqrt(u * u + v * v) * size;
noiseUV.x = (len == 0.0) ? 0.0 : u / len;
noiseUV.y = (len == 0.0) ? 0.0 : v / len;
double currentSize = 1.0;
double currentEvoScale = 1.0;
double noiseVal = 0.5;
noiseUV.x += offset.x;
noiseUV.y += offset.y;
for (int oct = 0; oct < octave; oct++) {
double2 currentNoiseUV = {noiseUV.x / currentSize,
noiseUV.y / currentSize};
noiseVal += noise_intensity[oct] *
SimplexNoise::noise(currentNoiseUV.x, currentNoiseUV.y,
evolution * currentEvoScale);
currentSize *= 0.5;
currentEvoScale *= 2.0;
}
double scale = 1.0 / (1.0 + (noiseVal - 1) * noiseFactor);
double rot_u = u * cos_t - v * sin_t;
double rot_v = u * sin_t + v * cos_t;
double distorted_i = rot_u * scale + double(dimIris) / 2.0;
double distorted_j = rot_v * scale + double(dimIris) / 2.0;
if (distorted_i < 0.0 || distorted_i >= double(dimIris - 1) ||
distorted_j < 0.0 || distorted_j >= double(dimIris - 1))
(*dist_p) = 0.0;
else
(*dist_p) = lerpGlarePtn(distorted_i, distorted_j, glare);
}
}
dist_p = distortedPtn_p;
double* gl_p = glare;
for (int i = 0; i < dimIris * dimIris; i++, dist_p++, gl_p++)
(*gl_p) = (*dist_p);
distortedPtn_ras->unlock();
}
//------------------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_GlareFx::setFilterPreviewToResult(const RASTER ras, double3* glare,
int dimIris, int2 margin) {
auto clamp01 = [](double chan) {
if (chan < 0.0) return 0.0;
if (chan > 1.0) return 1.0;
return chan;
};
bool doClamp = (ras->getPixelSize() != 16);
int j = margin.y;
for (int out_j = 0; out_j < ras->getLy(); j++, out_j++) {
if (j < 0)
continue;
else if (j >= dimIris)
break;
PIXEL* pix = ras->pixels(out_j);
int i = margin.x;
for (int out_i = 0; out_i < ras->getLx(); i++, out_i++, pix++) {
if (i < 0)
continue;
else if (i >= dimIris)
break;
double3 gl_p = glare[j * dimIris + i];
if (doClamp) {
pix->r = (typename PIXEL::Channel)(clamp01(gl_p.x) *
double(PIXEL::maxChannelValue));
pix->g = (typename PIXEL::Channel)(clamp01(gl_p.y) *
double(PIXEL::maxChannelValue));
pix->b = (typename PIXEL::Channel)(clamp01(gl_p.z) *
double(PIXEL::maxChannelValue));
} else { // floating point case
pix->r = (typename PIXEL::Channel)gl_p.x;
pix->g = (typename PIXEL::Channel)gl_p.y;
pix->b = (typename PIXEL::Channel)gl_p.z;
}
pix->m = PIXEL::maxChannelValue;
}
}
}
//------------------------------------------------
// put the source tile's brightness to fft buffer
template <typename RASTER, typename PIXEL>
void Iwa_GlareFx::setSourceTileToBuffer(const RASTER ras, kiss_fft_cpx* buf) {
kiss_fft_cpx* buf_p = buf;
for (int j = 0; j < ras->getLy(); j++) {
PIXEL* pix = ras->pixels(j);
for (int i = 0; i < ras->getLx(); i++, pix++, buf_p++) {
// Value = 0.3R 0.59G 0.11B
(*buf_p).r = (double(pix->r) * 0.3 + double(pix->g) * 0.59 +
double(pix->b) * 0.11) /
double(PIXEL::maxChannelValue);
}
}
}
// put the source tile's brightness to fft buffer
template <typename RASTER, typename PIXEL>
void Iwa_GlareFx::setSourceTileToBuffer(const RASTER ras, kiss_fft_cpx* buf,
int channel) {
kiss_fft_cpx* buf_p = buf;
for (int j = 0; j < ras->getLy(); j++) {
PIXEL* pix = ras->pixels(j);
for (int i = 0; i < ras->getLx(); i++, pix++, buf_p++) {
if (channel == 0)
(*buf_p).r = float(pix->r) / float(PIXEL::maxChannelValue);
else if (channel == 1)
(*buf_p).r = float(pix->g) / float(PIXEL::maxChannelValue);
else { // if (channel == 2)
(*buf_p).r = float(pix->b) / float(PIXEL::maxChannelValue);
}
(*buf_p).i = 0.f;
}
}
}
//------------------------------------------------
void Iwa_GlareFx::setGlarePatternToBuffer(const double3* glare,
kiss_fft_cpx* buf, const int channel,
const int dimIris,
const TDimensionI& dimOut) {
int margin_x = (dimOut.lx - dimIris) / 2;
int margin_y = (dimOut.ly - dimIris) / 2;
for (int j = margin_y; j < margin_y + dimIris; j++) {
const double3* glare_p = &glare[(j - margin_y) * dimIris];
kiss_fft_cpx* buf_p = &buf[j * dimOut.lx + margin_x];
for (int i = margin_x; i < margin_x + dimIris; i++, buf_p++, glare_p++) {
(*buf_p).r = (channel == 0) ? (*glare_p).x
: (channel == 1) ? (*glare_p).y
: (*glare_p).z;
}
}
}
//------------------------------------------------
void Iwa_GlareFx::multiplyFilter(kiss_fft_cpx* glare,
const kiss_fft_cpx* source, const int count) {
kiss_fft_cpx* g_p = glare;
const kiss_fft_cpx* s_p = source;
for (int i = 0; i < count; i++, g_p++, s_p++) {
double re = (*g_p).r * (*s_p).r - (*g_p).i * (*s_p).i;
double im = (*g_p).r * (*s_p).i + (*s_p).r * (*g_p).i;
(*g_p).r = re;
(*g_p).i = im;
}
}
//------------------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_GlareFx::setChannelToResult(const RASTER ras, kiss_fft_cpx* buf,
int channel, const TDimensionI& dimOut) {
auto clamp01 = [](double chan) {
if (chan < 0.0) return 0.0;
if (chan > 1.0) return 1.0;
return chan;
};
int margin_x = (dimOut.lx - ras->getSize().lx) / 2;
int margin_y = (dimOut.ly - ras->getSize().ly) / 2;
bool doClamp = (ras->getPixelSize() != 16);
for (int j = 0; j < ras->getLy(); j++) {
// kiss_fft_cpx* buf_p = &buf[(j + margin_y)*dimOut.lx + margin_x];
PIXEL* pix = ras->pixels(j);
for (int i = 0; i < ras->getLx(); i++, pix++) {
kiss_fft_cpx fft_val =
buf[getCoord(i + margin_x, j + margin_y, dimOut.lx, dimOut.ly)];
double val = fft_val.r / (dimOut.lx * dimOut.ly);
if (doClamp) {
if (channel == 0)
pix->r = (typename PIXEL::Channel)(clamp01(val) *
double(PIXEL::maxChannelValue));
else if (channel == 1)
pix->g = (typename PIXEL::Channel)(clamp01(val) *
double(PIXEL::maxChannelValue));
else if (channel == 2) {
pix->b = (typename PIXEL::Channel)(clamp01(val) *
double(PIXEL::maxChannelValue));
pix->m = PIXEL::maxChannelValue;
}
} else { // floating point case
if (channel == 0)
pix->r = (typename PIXEL::Channel)val;
else if (channel == 1)
pix->g = (typename PIXEL::Channel)val;
else if (channel == 2) {
pix->b = (typename PIXEL::Channel)val;
pix->m = PIXEL::maxChannelValue;
}
}
}
}
}
//------------------------------------------------
bool Iwa_GlareFx::doGetBBox(double frame, TRectD& bBox,
const TRenderSettings& info) {
bBox = TConsts::infiniteRectD;
return true;
}
//------------------------------------------------
bool Iwa_GlareFx::canHandle(const TRenderSettings& info, double frame) {
return false;
}
//------------------------------------------------
// Resize / flip the iris image according to the size ratio.
// Normalize the brightness of the iris image.
// Enlarge the iris to the output size.
void Iwa_GlareFx::convertIris(kiss_fft_cpx* kissfft_comp_iris_before,
const int& dimIris, const TRectD& irisBBox,
const TRasterP irisRaster) {
// the original size of iris image
double2 irisOrgSize = {irisBBox.getLx(), irisBBox.getLy()};
// add 1 pixel margins to all sides
int2 filterSize = {(int)std::ceil(irisOrgSize.x) + 2,
(int)std::ceil(irisOrgSize.y) + 2};
TPointD resizeOffset((double)filterSize.x - irisOrgSize.x,
(double)filterSize.y - irisOrgSize.y);
// Try to set the center of the iris to the center of the screen
if ((dimIris - filterSize.x) % 2 == 1) filterSize.x++;
if ((dimIris - filterSize.y) % 2 == 1) filterSize.y++;
TRaster64P resizedIris(TDimension(filterSize.x, filterSize.y));
TAffine aff;
TPointD affOffset(0.5, 0.5);
if (dimIris % 2 == 1) affOffset += TPointD(0.5, 0.5);
aff = TTranslation(resizedIris->getCenterD() + affOffset);
aff *= TTranslation(-(irisRaster->getCenterD() + affOffset));
// resample the iris
TRop::resample(resizedIris, irisRaster, aff);
// accumulated value
float irisValAmount = 0.0;
int iris_j = 0;
// Initialize
for (int i = 0; i < dimIris * dimIris; i++) {
kissfft_comp_iris_before[i].r = 0.0;
kissfft_comp_iris_before[i].i = 0.0;
}
for (int j = (dimIris - filterSize.y) / 2; iris_j < filterSize.y;
j++, iris_j++) {
if (j < 0) continue;
if (j >= dimIris) break;
TPixel64* pix = resizedIris->pixels(iris_j);
int iris_i = 0;
for (int i = (dimIris - filterSize.x) / 2; iris_i < filterSize.x;
i++, iris_i++) {
if (i < 0) continue;
if (i >= dimIris) break;
// Value = 0.3R 0.59G 0.11B
kissfft_comp_iris_before[j * dimIris + i].r =
((float)pix->r * 0.3f + (float)pix->g * 0.59f +
(float)pix->b * 0.11f) /
(float)USHRT_MAX;
irisValAmount += kissfft_comp_iris_before[j * dimIris + i].r;
pix++;
}
}
// Normalize value
for (int i = 0; i < dimIris * dimIris; i++) {
kissfft_comp_iris_before[i].r /= irisValAmount;
}
}
//------------------------------------------------
void Iwa_GlareFx::getParamUIs(TParamUIConcept*& concepts, int& length) {
concepts = new TParamUIConcept[length = 2];
concepts[0].m_type = TParamUIConcept::RADIUS;
concepts[0].m_label = "Size";
concepts[0].m_params.push_back(m_size);
concepts[1].m_type = TParamUIConcept::POINT;
concepts[1].m_label = "Noise Offset";
concepts[1].m_params.push_back(m_noise_offset);
}
//------------------------------------------------
bool Iwa_GlareFx::toBeComputedInLinearColorSpace(bool settingsIsLinear,
bool tileIsLinear) const {
return settingsIsLinear;
}
FX_PLUGIN_IDENTIFIER(Iwa_GlareFx, "iwa_GlareFx")