tahoma2d/thirdparty/superlu/SuperLU_4.1/TESTING/sdrive.c
2016-03-24 01:31:57 +09:00

544 lines
16 KiB
C

/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
* File name: sdrive.c
* Purpose: MAIN test program
*/
#include <string.h>
#include "slu_sdefs.h"
#define NTESTS 5 /* Number of test types */
#define NTYPES 11 /* Number of matrix types */
#define NTRAN 2
#define THRESH 20.0
#define FMT1 "%10s:n=%d, test(%d)=%12.5g\n"
#define FMT2 "%10s:fact=%4d, trans=%4d, equed=%c, n=%d, imat=%d, test(%d)=%12.5g\n"
#define FMT3 "%10s:info=%d, izero=%d, n=%d, nrhs=%d, imat=%d, nfail=%d\n"
static void
parse_command_line(int argc, char *argv[], char *matrix_type,
int *n, int *w, int *relax, int *nrhs, int *maxsuper,
int *rowblk, int *colblk, int *lwork, double *u);
main(int argc, char *argv[])
{
/*
* Purpose
* =======
*
* SDRIVE is the main test program for the FLOAT linear
* equation driver routines SGSSV and SGSSVX.
*
* The program is invoked by a shell script file -- stest.csh.
* The output from the tests are written into a file -- stest.out.
*
* =====================================================================
*/
float *a, *a_save;
int *asub, *asub_save;
int *xa, *xa_save;
SuperMatrix A, B, X, L, U;
SuperMatrix ASAV, AC;
mem_usage_t mem_usage;
int *perm_r; /* row permutation from partial pivoting */
int *perm_c, *pc_save; /* column permutation */
int *etree;
float zero = 0.0;
float *R, *C;
float *ferr, *berr;
float *rwork;
float *wwork;
void *work;
int info, lwork, nrhs, panel_size, relax;
int m, n, nnz;
float *xact;
float *rhsb, *solx, *bsav;
int ldb, ldx;
float rpg, rcond;
int i, j, k1;
float rowcnd, colcnd, amax;
int maxsuper, rowblk, colblk;
int prefact, nofact, equil, iequed;
int nt, nrun, nfail, nerrs, imat, fimat, nimat;
int nfact, ifact, itran;
int kl, ku, mode, lda;
int zerot, izero, ioff;
double u;
float anorm, cndnum;
float *Afull;
float result[NTESTS];
superlu_options_t options;
fact_t fact;
trans_t trans;
SuperLUStat_t stat;
static char matrix_type[8];
static char equed[1], path[4], sym[1], dist[1];
/* Fixed set of parameters */
int iseed[] = {1988, 1989, 1990, 1991};
static char equeds[] = {'N', 'R', 'C', 'B'};
static fact_t facts[] = {FACTORED, DOFACT, SamePattern,
SamePattern_SameRowPerm};
static trans_t transs[] = {NOTRANS, TRANS, CONJ};
/* Some function prototypes */
extern int sgst01(int, int, SuperMatrix *, SuperMatrix *,
SuperMatrix *, int *, int *, float *);
extern int sgst02(trans_t, int, int, int, SuperMatrix *, float *,
int, float *, int, float *resid);
extern int sgst04(int, int, float *, int,
float *, int, float rcond, float *resid);
extern int sgst07(trans_t, int, int, SuperMatrix *, float *, int,
float *, int, float *, int,
float *, float *, float *);
extern int slatb4_(char *, int *, int *, int *, char *, int *, int *,
float *, int *, float *, char *);
extern int slatms_(int *, int *, char *, int *, char *, float *d,
int *, float *, float *, int *, int *,
char *, float *, int *, float *, int *);
extern int sp_sconvert(int, int, float *, int, int, int,
float *a, int *, int *, int *);
/* Executable statements */
strcpy(path, "SGE");
nrun = 0;
nfail = 0;
nerrs = 0;
/* Defaults */
lwork = 0;
n = 1;
nrhs = 1;
panel_size = sp_ienv(1);
relax = sp_ienv(2);
u = 1.0;
strcpy(matrix_type, "LA");
parse_command_line(argc, argv, matrix_type, &n,
&panel_size, &relax, &nrhs, &maxsuper,
&rowblk, &colblk, &lwork, &u);
if ( lwork > 0 ) {
work = SUPERLU_MALLOC(lwork);
if ( !work ) {
fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
exit (-1);
}
}
/* Set the default input options. */
set_default_options(&options);
options.DiagPivotThresh = u;
options.PrintStat = NO;
options.PivotGrowth = YES;
options.ConditionNumber = YES;
options.IterRefine = SINGLE;
if ( strcmp(matrix_type, "LA") == 0 ) {
/* Test LAPACK matrix suite. */
m = n;
lda = SUPERLU_MAX(n, 1);
nnz = n * n; /* upper bound */
fimat = 1;
nimat = NTYPES;
Afull = floatCalloc(lda * n);
sallocateA(n, nnz, &a, &asub, &xa);
} else {
/* Read a sparse matrix */
fimat = nimat = 0;
sreadhb(&m, &n, &nnz, &a, &asub, &xa);
}
sallocateA(n, nnz, &a_save, &asub_save, &xa_save);
rhsb = floatMalloc(m * nrhs);
bsav = floatMalloc(m * nrhs);
solx = floatMalloc(n * nrhs);
ldb = m;
ldx = n;
sCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_S, SLU_GE);
sCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_S, SLU_GE);
xact = floatMalloc(n * nrhs);
etree = intMalloc(n);
perm_r = intMalloc(n);
perm_c = intMalloc(n);
pc_save = intMalloc(n);
R = (float *) SUPERLU_MALLOC(m*sizeof(float));
C = (float *) SUPERLU_MALLOC(n*sizeof(float));
ferr = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
berr = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);
rwork = (float *) SUPERLU_MALLOC(j*sizeof(float));
for (i = 0; i < j; ++i) rwork[i] = 0.;
if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
wwork = floatCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );
for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
options.ColPerm = MY_PERMC;
for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
if ( imat ) {
/* Skip types 5, 6, or 7 if the matrix size is too small. */
zerot = (imat >= 5 && imat <= 7);
if ( zerot && n < imat-4 )
continue;
/* Set up parameters with SLATB4 and generate a test matrix
with SLATMS. */
slatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
&cndnum, dist);
slatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
&anorm, &kl, &ku, "No packing", Afull, &lda,
&wwork[0], &info);
if ( info ) {
printf(FMT3, "SLATMS", info, izero, n, nrhs, imat, nfail);
continue;
}
/* For types 5-7, zero one or more columns of the matrix
to test that INFO is returned correctly. */
if ( zerot ) {
if ( imat == 5 ) izero = 1;
else if ( imat == 6 ) izero = n;
else izero = n / 2 + 1;
ioff = (izero - 1) * lda;
if ( imat < 7 ) {
for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
} else {
for (j = 0; j < n - izero + 1; ++j)
for (i = 0; i < n; ++i)
Afull[ioff + i + j*lda] = zero;
}
} else {
izero = 0;
}
/* Convert to sparse representation. */
sp_sconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);
} else {
izero = 0;
zerot = 0;
}
sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);
/* Save a copy of matrix A in ASAV */
sCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
SLU_NC, SLU_S, SLU_GE);
sCopy_CompCol_Matrix(&A, &ASAV);
/* Form exact solution. */
sGenXtrue(n, nrhs, xact, ldx);
StatInit(&stat);
for (iequed = 0; iequed < 4; ++iequed) {
*equed = equeds[iequed];
if (iequed == 0) nfact = 4;
else nfact = 1; /* Only test factored, pre-equilibrated matrix */
for (ifact = 0; ifact < nfact; ++ifact) {
fact = facts[ifact];
options.Fact = fact;
for (equil = 0; equil < 2; ++equil) {
options.Equil = equil;
prefact = ( options.Fact == FACTORED ||
options.Fact == SamePattern_SameRowPerm );
/* Need a first factor */
nofact = (options.Fact != FACTORED); /* Not factored */
/* Restore the matrix A. */
sCopy_CompCol_Matrix(&ASAV, &A);
if ( zerot ) {
if ( prefact ) continue;
} else if ( options.Fact == FACTORED ) {
if ( equil || iequed ) {
/* Compute row and column scale factors to
equilibrate matrix A. */
sgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);
/* Force equilibration. */
if ( !info && n > 0 ) {
if ( lsame_(equed, "R") ) {
rowcnd = 0.;
colcnd = 1.;
} else if ( lsame_(equed, "C") ) {
rowcnd = 1.;
colcnd = 0.;
} else if ( lsame_(equed, "B") ) {
rowcnd = 0.;
colcnd = 0.;
}
}
/* Equilibrate the matrix. */
slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
}
}
if ( prefact ) { /* Need a factor for the first time */
/* Save Fact option. */
fact = options.Fact;
options.Fact = DOFACT;
/* Preorder the matrix, obtain the column etree. */
sp_preorder(&options, &A, perm_c, etree, &AC);
/* Factor the matrix AC. */
sgstrf(&options, &AC, relax, panel_size,
etree, work, lwork, perm_c, perm_r, &L, &U,
&stat, &info);
if ( info ) {
printf("** First factor: info %d, equed %c\n",
info, *equed);
if ( lwork == -1 ) {
printf("** Estimated memory: %d bytes\n",
info - n);
exit(0);
}
}
Destroy_CompCol_Permuted(&AC);
/* Restore Fact option. */
options.Fact = fact;
} /* if .. first time factor */
for (itran = 0; itran < NTRAN; ++itran) {
trans = transs[itran];
options.Trans = trans;
/* Restore the matrix A. */
sCopy_CompCol_Matrix(&ASAV, &A);
/* Set the right hand side. */
sFillRHS(trans, nrhs, xact, ldx, &A, &B);
sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);
/*----------------
* Test sgssv
*----------------*/
if ( options.Fact == DOFACT && itran == 0) {
/* Not yet factored, and untransposed */
sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
sgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
&stat, &info);
if ( info && info != izero ) {
printf(FMT3, "sgssv",
info, izero, n, nrhs, imat, nfail);
} else {
/* Reconstruct matrix from factors and
compute residual. */
sgst01(m, n, &A, &L, &U, perm_c, perm_r,
&result[0]);
nt = 1;
if ( izero == 0 ) {
/* Compute residual of the computed
solution. */
sCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
wwork, ldb);
sgst02(trans, m, n, nrhs, &A, solx,
ldx, wwork,ldb, &result[1]);
nt = 2;
}
/* Print information about the tests that
did not pass the threshold. */
for (i = 0; i < nt; ++i) {
if ( result[i] >= THRESH ) {
printf(FMT1, "sgssv", n, i,
result[i]);
++nfail;
}
}
nrun += nt;
} /* else .. info == 0 */
/* Restore perm_c. */
for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];
if (lwork == 0) {
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);
}
} /* if .. end of testing sgssv */
/*----------------
* Test sgssvx
*----------------*/
/* Equilibrate the matrix if fact = FACTORED and
equed = 'R', 'C', or 'B'. */
if ( options.Fact == FACTORED &&
(equil || iequed) && n > 0 ) {
slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
}
/* Solve the system and compute the condition number
and error bounds using sgssvx. */
sgssvx(&options, &A, perm_c, perm_r, etree,
equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
&rcond, ferr, berr, &mem_usage, &stat, &info);
if ( info && info != izero ) {
printf(FMT3, "sgssvx",
info, izero, n, nrhs, imat, nfail);
if ( lwork == -1 ) {
printf("** Estimated memory: %.0f bytes\n",
mem_usage.total_needed);
exit(0);
}
} else {
if ( !prefact ) {
/* Reconstruct matrix from factors and
compute residual. */
sgst01(m, n, &A, &L, &U, perm_c, perm_r,
&result[0]);
k1 = 0;
} else {
k1 = 1;
}
if ( !info ) {
/* Compute residual of the computed solution.*/
sCopy_Dense_Matrix(m, nrhs, bsav, ldb,
wwork, ldb);
sgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
wwork, ldb, &result[1]);
/* Check solution from generated exact
solution. */
sgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
&result[2]);
/* Check the error bounds from iterative
refinement. */
sgst07(trans, n, nrhs, &ASAV, bsav, ldb,
solx, ldx, xact, ldx, ferr, berr,
&result[3]);
/* Print information about the tests that did
not pass the threshold. */
for (i = k1; i < NTESTS; ++i) {
if ( result[i] >= THRESH ) {
printf(FMT2, "sgssvx",
options.Fact, trans, *equed,
n, imat, i, result[i]);
++nfail;
}
}
nrun += NTESTS;
} /* if .. info == 0 */
} /* else .. end of testing sgssvx */
} /* for itran ... */
if ( lwork == 0 ) {
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);
}
} /* for equil ... */
} /* for ifact ... */
} /* for iequed ... */
#if 0
if ( !info ) {
PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
}
#endif
} /* for imat ... */
/* Print a summary of the results. */
PrintSumm("SGE", nfail, nrun, nerrs);
SUPERLU_FREE (rhsb);
SUPERLU_FREE (bsav);
SUPERLU_FREE (solx);
SUPERLU_FREE (xact);
SUPERLU_FREE (etree);
SUPERLU_FREE (perm_r);
SUPERLU_FREE (perm_c);
SUPERLU_FREE (pc_save);
SUPERLU_FREE (R);
SUPERLU_FREE (C);
SUPERLU_FREE (ferr);
SUPERLU_FREE (berr);
SUPERLU_FREE (rwork);
SUPERLU_FREE (wwork);
Destroy_SuperMatrix_Store(&B);
Destroy_SuperMatrix_Store(&X);
Destroy_CompCol_Matrix(&A);
Destroy_CompCol_Matrix(&ASAV);
if ( lwork > 0 ) {
SUPERLU_FREE (work);
Destroy_SuperMatrix_Store(&L);
Destroy_SuperMatrix_Store(&U);
}
StatFree(&stat);
return 0;
}
/*
* Parse command line options to get relaxed snode size, panel size, etc.
*/
static void
parse_command_line(int argc, char *argv[], char *matrix_type,
int *n, int *w, int *relax, int *nrhs, int *maxsuper,
int *rowblk, int *colblk, int *lwork, double *u)
{
int c;
extern char *optarg;
while ( (c = getopt(argc, argv, "ht:n:w:r:s:m:b:c:l:")) != EOF ) {
switch (c) {
case 'h':
printf("Options:\n");
printf("\t-w <int> - panel size\n");
printf("\t-r <int> - granularity of relaxed supernodes\n");
exit(1);
break;
case 't': strcpy(matrix_type, optarg);
break;
case 'n': *n = atoi(optarg);
break;
case 'w': *w = atoi(optarg);
break;
case 'r': *relax = atoi(optarg);
break;
case 's': *nrhs = atoi(optarg);
break;
case 'm': *maxsuper = atoi(optarg);
break;
case 'b': *rowblk = atoi(optarg);
break;
case 'c': *colblk = atoi(optarg);
break;
case 'l': *lwork = atoi(optarg);
break;
case 'u': *u = atof(optarg);
break;
}
}
}