/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include "common.h" #ifdef FUNCTION_PROFILE #include "functable.h" #endif #ifndef COMPLEX #ifdef XDOUBLE #define ERROR_NAME "QGEMM " #elif defined(DOUBLE) #define ERROR_NAME "DGEMM " #else #define ERROR_NAME "SGEMM " #endif #else #ifndef GEMM3M #ifdef XDOUBLE #define ERROR_NAME "XGEMM " #elif defined(DOUBLE) #define ERROR_NAME "ZGEMM " #else #define ERROR_NAME "CGEMM " #endif #else #ifdef XDOUBLE #define ERROR_NAME "XGEMM3M " #elif defined(DOUBLE) #define ERROR_NAME "ZGEMM3M " #else #define ERROR_NAME "CGEMM3M " #endif #endif #endif static int (*gemm[])(blas_arg_t *, BLASLONG *, BLASLONG *, FLOAT *, FLOAT *, BLASLONG) = { #ifndef GEMM3M GEMM_NN, GEMM_TN, GEMM_RN, GEMM_CN, GEMM_NT, GEMM_TT, GEMM_RT, GEMM_CT, GEMM_NR, GEMM_TR, GEMM_RR, GEMM_CR, GEMM_NC, GEMM_TC, GEMM_RC, GEMM_CC, #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3) GEMM_THREAD_NN, GEMM_THREAD_TN, GEMM_THREAD_RN, GEMM_THREAD_CN, GEMM_THREAD_NT, GEMM_THREAD_TT, GEMM_THREAD_RT, GEMM_THREAD_CT, GEMM_THREAD_NR, GEMM_THREAD_TR, GEMM_THREAD_RR, GEMM_THREAD_CR, GEMM_THREAD_NC, GEMM_THREAD_TC, GEMM_THREAD_RC, GEMM_THREAD_CC, #endif #else GEMM3M_NN, GEMM3M_TN, GEMM3M_RN, GEMM3M_CN, GEMM3M_NT, GEMM3M_TT, GEMM3M_RT, GEMM3M_CT, GEMM3M_NR, GEMM3M_TR, GEMM3M_RR, GEMM3M_CR, GEMM3M_NC, GEMM3M_TC, GEMM3M_RC, GEMM3M_CC, #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3) GEMM3M_THREAD_NN, GEMM3M_THREAD_TN, GEMM3M_THREAD_RN, GEMM3M_THREAD_CN, GEMM3M_THREAD_NT, GEMM3M_THREAD_TT, GEMM3M_THREAD_RT, GEMM3M_THREAD_CT, GEMM3M_THREAD_NR, GEMM3M_THREAD_TR, GEMM3M_THREAD_RR, GEMM3M_THREAD_CR, GEMM3M_THREAD_NC, GEMM3M_THREAD_TC, GEMM3M_THREAD_RC, GEMM3M_THREAD_CC, #endif #endif }; #ifndef CBLAS void NAME(char *TRANSA, char *TRANSB, blasint *M, blasint *N, blasint *K, FLOAT *alpha, FLOAT *a, blasint *ldA, FLOAT *b, blasint *ldB, FLOAT *beta, FLOAT *c, blasint *ldC){ blas_arg_t args; int transa, transb, nrowa, nrowb; blasint info; char transA, transB; FLOAT *buffer; FLOAT *sa, *sb; #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3) int nodes; #endif PRINT_DEBUG_NAME; args.m = *M; args.n = *N; args.k = *K; args.a = (void *)a; args.b = (void *)b; args.c = (void *)c; args.lda = *ldA; args.ldb = *ldB; args.ldc = *ldC; args.alpha = (void *)alpha; args.beta = (void *)beta; transA = *TRANSA; transB = *TRANSB; TOUPPER(transA); TOUPPER(transB); transa = -1; transb = -1; if (transA == 'N') transa = 0; if (transA == 'T') transa = 1; #ifndef COMPLEX if (transA == 'R') transa = 0; if (transA == 'C') transa = 1; #else if (transA == 'R') transa = 2; if (transA == 'C') transa = 3; #endif if (transB == 'N') transb = 0; if (transB == 'T') transb = 1; #ifndef COMPLEX if (transB == 'R') transb = 0; if (transB == 'C') transb = 1; #else if (transB == 'R') transb = 2; if (transB == 'C') transb = 3; #endif nrowa = args.m; if (transa & 1) nrowa = args.k; nrowb = args.k; if (transb & 1) nrowb = args.n; info = 0; if (args.ldc < args.m) info = 13; if (args.ldb < nrowb) info = 10; if (args.lda < nrowa) info = 8; if (args.k < 0) info = 5; if (args.n < 0) info = 4; if (args.m < 0) info = 3; if (transb < 0) info = 2; if (transa < 0) info = 1; if (info){ BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME)); return; } #else void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANSPOSE TransB, blasint m, blasint n, blasint k, #ifndef COMPLEX FLOAT alpha, #else FLOAT *alpha, #endif FLOAT *a, blasint lda, FLOAT *b, blasint ldb, #ifndef COMPLEX FLOAT beta, #else FLOAT *beta, #endif FLOAT *c, blasint ldc) { blas_arg_t args; int transa, transb; blasint nrowa, nrowb, info; XFLOAT *buffer; XFLOAT *sa, *sb; #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3) int nodes; #endif PRINT_DEBUG_CNAME; #ifndef COMPLEX args.alpha = (void *)α args.beta = (void *)β #else args.alpha = (void *)alpha; args.beta = (void *)beta; #endif transa = -1; transb = -1; info = 0; if (order == CblasColMajor) { args.m = m; args.n = n; args.k = k; args.a = (void *)a; args.b = (void *)b; args.c = (void *)c; args.lda = lda; args.ldb = ldb; args.ldc = ldc; if (TransA == CblasNoTrans) transa = 0; if (TransA == CblasTrans) transa = 1; #ifndef COMPLEX if (TransA == CblasConjNoTrans) transa = 0; if (TransA == CblasConjTrans) transa = 1; #else if (TransA == CblasConjNoTrans) transa = 2; if (TransA == CblasConjTrans) transa = 3; #endif if (TransB == CblasNoTrans) transb = 0; if (TransB == CblasTrans) transb = 1; #ifndef COMPLEX if (TransB == CblasConjNoTrans) transb = 0; if (TransB == CblasConjTrans) transb = 1; #else if (TransB == CblasConjNoTrans) transb = 2; if (TransB == CblasConjTrans) transb = 3; #endif nrowa = args.m; if (transa & 1) nrowa = args.k; nrowb = args.k; if (transb & 1) nrowb = args.n; info = -1; if (args.ldc < args.m) info = 13; if (args.ldb < nrowb) info = 10; if (args.lda < nrowa) info = 8; if (args.k < 0) info = 5; if (args.n < 0) info = 4; if (args.m < 0) info = 3; if (transb < 0) info = 2; if (transa < 0) info = 1; } if (order == CblasRowMajor) { args.m = n; args.n = m; args.k = k; args.a = (void *)b; args.b = (void *)a; args.c = (void *)c; args.lda = ldb; args.ldb = lda; args.ldc = ldc; if (TransB == CblasNoTrans) transa = 0; if (TransB == CblasTrans) transa = 1; #ifndef COMPLEX if (TransB == CblasConjNoTrans) transa = 0; if (TransB == CblasConjTrans) transa = 1; #else if (TransB == CblasConjNoTrans) transa = 2; if (TransB == CblasConjTrans) transa = 3; #endif if (TransA == CblasNoTrans) transb = 0; if (TransA == CblasTrans) transb = 1; #ifndef COMPLEX if (TransA == CblasConjNoTrans) transb = 0; if (TransA == CblasConjTrans) transb = 1; #else if (TransA == CblasConjNoTrans) transb = 2; if (TransA == CblasConjTrans) transb = 3; #endif nrowa = args.m; if (transa & 1) nrowa = args.k; nrowb = args.k; if (transb & 1) nrowb = args.n; info = -1; if (args.ldc < args.m) info = 13; if (args.ldb < nrowb) info = 10; if (args.lda < nrowa) info = 8; if (args.k < 0) info = 5; if (args.n < 0) info = 4; if (args.m < 0) info = 3; if (transb < 0) info = 2; if (transa < 0) info = 1; } if (info >= 0) { BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME)); return; } #endif if ((args.m == 0) || (args.n == 0)) return; #if 0 fprintf(stderr, "m = %4d n = %d k = %d lda = %4d ldb = %4d ldc = %4d\n", args.m, args.n, args.k, args.lda, args.ldb, args.ldc); #endif IDEBUG_START; FUNCTION_PROFILE_START(); buffer = (XFLOAT *)blas_memory_alloc(0); sa = (XFLOAT *)((BLASLONG)buffer +GEMM_OFFSET_A); sb = (XFLOAT *)(((BLASLONG)sa + ((GEMM_P * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); #ifdef SMP mode |= (transa << BLAS_TRANSA_SHIFT); mode |= (transb << BLAS_TRANSB_SHIFT); args.common = NULL; if(args.m <= GEMM_MULTITHREAD_THRESHOLD || args.n <= GEMM_MULTITHREAD_THRESHOLD || args.k <=GEMM_MULTITHREAD_THRESHOLD){ args.nthreads = 1; }else{ args.nthreads = num_cpu_avail(3); } if (args.nthreads == 1) { #endif (gemm[(transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0); #ifdef SMP } else { #ifndef USE_SIMPLE_THREADED_LEVEL3 #ifndef NO_AFFINITY nodes = get_num_nodes(); if ((nodes > 1) && get_node_equal()) { args.nthreads /= nodes; gemm_thread_mn(mode, &args, NULL, NULL, gemm[16 | (transb << 2) | transa], sa, sb, nodes); } else { #endif (gemm[16 | (transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0); #else GEMM_THREAD(mode, &args, NULL, NULL, gemm[(transb << 2) | transa], sa, sb, args.nthreads); #endif #ifndef USE_SIMPLE_THREADED_LEVEL3 #ifndef NO_AFFINITY } #endif #endif #endif #ifdef SMP } #endif blas_memory_free(buffer); FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.k + args.k * args.n + args.m * args.n, 2 * args.m * args.n * args.k); IDEBUG_END; return; }