#include // std::cout #include // std::vector #include // cos(),sin(),sqrt() #include // std::numeric_limits #include // std::domain_error() #include "igs_ifx_common.h" #include "igs_rotate_blur.h" #include #include namespace { enum Type { Accelerator = 0, Uniform_Angle, Uniform_Length }; //------------------------------------------------------------------ class Rotator { const float* in_top_; const int hh_; const int ww_; const int cc_; const TPointD center_; const bool antialias_sw_; const bool alpha_rendering_sw_; const double radian_; const double blur_radius_; const double spin_radius_; const int type_; const double ellipse_aspect_ratio_; const double ellipse_angle_; QTransform tr_, tr_inv_; public: Rotator(const float* in_top, const int height, const int width, const int channels, const TPointD center, const bool antialias_sw, const bool alpha_rendering_sw, const double radian, const double blur_radius, const double spin_radius, const int type, const double ellipse_aspect_ratio, const double ellipse_angle) : in_top_(in_top) , hh_(height) , ww_(width) , cc_(channels) , center_(center) , antialias_sw_(antialias_sw) , alpha_rendering_sw_(alpha_rendering_sw) , radian_(radian) , blur_radius_(blur_radius) , spin_radius_(spin_radius) , type_(type) , ellipse_aspect_ratio_(ellipse_aspect_ratio) , ellipse_angle_(ellipse_angle) { if (ellipse_aspect_ratio_ != 1.0) { double axis_x = 2.0 * ellipse_aspect_ratio_ / (ellipse_aspect_ratio_ + 1.0); double axis_y = axis_x / ellipse_aspect_ratio_; tr_ = QTransform() .rotateRadians(this->ellipse_angle_) .scale(axis_x, axis_y); tr_inv_ = QTransform(tr_).inverted(); } } void pixel_value(const float* in_current_pixel, const int xx, const int yy, const bool isRGB, const double refVal, float* result_pixel) { auto in_pixel = [&](int x, int y) { /* clamp */ x = (x < 0) ? 0 : ((this->ww_ <= x) ? this->ww_ - 1 : x); y = (y < 0) ? 0 : ((this->hh_ <= y) ? this->hh_ - 1 : y); return this->in_top_ + this->cc_ * y * this->ww_ + this->cc_ * x; }; auto interp = [&](float v1, float v2, float r) { return v1 * (1.f - r) + v2 * r; }; auto accum_interp_in_values = [&](QPointF pos, std::vector& accumP, int z1, int z2, float weight) { int xId = (int)std::floor(pos.x()); float rx = pos.x() - (float)xId; int yId = (int)std::floor(pos.y()); float ry = pos.y() - (float)yId; const float* p00 = in_pixel(xId, yId); const float* p01 = in_pixel(xId + 1, yId); const float* p10 = in_pixel(xId, yId + 1); const float* p11 = in_pixel(xId + 1, yId + 1); for (int zz = z1; zz <= z2; zz++) { accumP[zz] += weight * interp(interp(p00[zz], p01[zz], rx), interp(p10[zz], p11[zz], rx), ry); } }; auto accum_in_values = [&](QPointF pos, std::vector& accumP, int z1, int z2, float weight) { int xId = (int)std::round(pos.x()); int yId = (int)std::round(pos.y()); const float* p = in_pixel(xId, yId); for (int zz = z1; zz <= z2; zz++) { accumP[zz] += weight * p[zz]; } }; int c1, c2; if (isRGB) { #if defined RGBA_ORDER_OF_TOONZ6 c1 = igs::image::rgba::blu; c2 = igs::image::rgba::red; #elif defined RGBA_ORDER_OF_OPENGL c1 = igs::image::rgba::red; c2 = igs::image::rgba::blu; #else Must be define / DRGBA_ORDER_OF_TOONZ6 or / DRGBA_ORDER_OF_OPENGL #endif } else { c1 = igs::image::rgba::alp; c2 = igs::image::rgba::alp; } const QPointF center(this->center_.x, this->center_.y); /* Pixel位置 */ const QPointF p(static_cast(xx), static_cast(yy)); /* 中心からPixel位置へのベクトルと長さ */ const QVector2D v(p - center); const float dist = v.length(); /* 指定半径の範囲内なら何もしない */ bool is_in_blur_radius = false; if (this->ellipse_aspect_ratio_ == 1.f) { is_in_blur_radius = (dist <= this->blur_radius_); } else { is_in_blur_radius = QVector2D(this->tr_inv_.map(v.toPointF())).lengthSquared() <= (this->blur_radius_ * this->blur_radius_); } if (is_in_blur_radius) { for (int c = c1; c <= c2; ++c) { result_pixel[c] = in_current_pixel[c]; } return; } /* 積算値と積算回数 */ std::vector accum_val(this->cc_); float accum_counter = 0.f; // TODO 重みづけを均一以外も選べるようにしたい /* 参照画像による強弱付加 */ float radian = this->radian_ * refVal; // TODO: it can be bidirectional.. if (type_ == Accelerator) { /* 外への強調 */ radian *= (dist - this->blur_radius_) / this->spin_radius_; } else if (type_ == Uniform_Length && dist > 0.) { // decrease radian so that the blur length becomes // the same along radius radian *= (this->spin_radius_ + this->blur_radius_) / dist; radian = std::min(radian, 2.f * (float)M_PI); } // blur pixel length at the current pos float spin_length_half = dist * radian * 0.5f; // sampling in both directions float sample_length = 0.f; while (sample_length < spin_length_half) { // compute weight float weight = 1.f; if (sample_length >= spin_length_half - 1.f) { if (antialias_sw_) weight = spin_length_half - sample_length; else break; } // advance to the next sample sample_length += weight; // compute for both side float sample_radian = sample_length / dist; QPointF vrot1, vrot2; if (this->ellipse_aspect_ratio_ == 1.f) { float cos = std::cos(sample_radian); float sin = std::sin(sample_radian); vrot1 = QPointF(cos * v.x() - sin * v.y(), sin * v.x() + cos * v.y()); vrot2 = QPointF(cos * v.x() + sin * v.y(), -sin * v.x() + cos * v.y()); } else { vrot1 = (this->tr_inv_ * QTransform(this->tr_).rotateRadians(sample_radian)) .map(v.toPointF()); vrot2 = (this->tr_inv_ * QTransform(this->tr_).rotateRadians(-sample_radian)) .map(v.toPointF()); } if (antialias_sw_) { accum_interp_in_values(vrot1 + center, accum_val, c1, c2, weight); accum_interp_in_values(vrot2 + center, accum_val, c1, c2, weight); } else { accum_in_values(vrot1 + center, accum_val, c1, c2, weight); accum_in_values(vrot2 + center, accum_val, c1, c2, weight); } accum_counter += weight * 2.f; } // sample the original pos if (antialias_sw_) accum_interp_in_values(p, accum_val, c1, c2, 1.f); else accum_in_values(p, accum_val, c1, c2, 1.f); accum_counter += 1.f; //} /* 積算しなかったとき(念のためのCheck) */ if (accum_counter <= 0.f) { for (int c = c1; c <= c2; ++c) { result_pixel[c] = in_current_pixel[c]; } return; } /* ここで画像Pixelに保存 */ for (int c = c1; c <= c2; ++c) { accum_val[c] /= accum_counter; if (isRGB && !this->alpha_rendering_sw_ && (in_current_pixel[c] < accum_val[c]) && result_pixel[igs::image::rgba::alp] < 1.f) { /* 増分のみMask! */ result_pixel[c] = in_current_pixel[c] + (accum_val[c] - in_current_pixel[c]) * result_pixel[igs::image::rgba::alp]; } else { result_pixel[c] = accum_val[c]; } } } private: // disable Rotator(); Rotator(const Rotator&); Rotator& operator=(const Rotator&) {} }; //------------------------------------------------------------------ void rotate_convert( const float* in, float* out, const int margin, /* 参照画像(in)がもつ余白 */ const TDimension out_dim, /* 求める画像(out)のサイズ */ const int channels, const float* ref, /* 求める画像(out)と同じ高さ、幅 */ const TPointD center, const double degree, const double blur_radius, /* ぼかしの始まる半径 */ const double spin_radius, /* ゼロ以上でspin指定となり、 かつぼかし強弱の一定になる半径となる */ const int type, // 0: Accelerator, 1: Uniform Angle, 2: Uniform Length const bool antialias_sw, /* when true, sampled pixel will be bilinear-interpolated */ const bool alpha_rendering_sw, const double ellipse_aspect_ratio, const double ellipse_angle) { assert(degree > 0.0); Rotator rotator(in, out_dim.ly + margin * 2, out_dim.lx + margin * 2, channels, center, antialias_sw, alpha_rendering_sw, degree * M_PI_180, blur_radius, spin_radius, type, ellipse_aspect_ratio, ellipse_angle * M_PI_180); const float* p_in = in + margin * (out_dim.lx + margin * 2) * channels + margin * channels; float* p_out = out; const float* p_ref = ref; // may be nullptr for (int yy = margin; yy < out_dim.ly + margin; ++yy, p_in += 2 * margin * channels) { for (int xx = margin; xx < out_dim.lx + margin; ++xx, p_in += channels, p_out += channels) { using namespace igs::image::rgba; float refVal = (ref) ? *p_ref : 1.f; // if the reference value is zero if (refVal == 0.f) { for (int c = 0; c < channels; ++c) p_out[c] = p_in[c]; p_ref++; continue; } if (alpha_rendering_sw) { // blur alpha rotator.pixel_value(p_in, xx, yy, false, refVal, p_out); } else { // use the src alpha as-is p_out[alp] = p_in[alp]; } if (p_out[alp] == 0.f) { p_out[red] = p_in[red]; p_out[gre] = p_in[gre]; p_out[blu] = p_in[blu]; if (ref) p_ref++; continue; } // blur RGB channels rotator.pixel_value(p_in, xx, yy, true, refVal, p_out); if (ref) p_ref++; } } } //------------------------------------------------------------------ } // namespace void igs::rotate_blur::convert( const float* in, float* out, const int margin, const TDimension out_dim, /* 求める画像(out)の大きさ */ const int channels, const float* ref, /* outと同じ高さ、幅 */ const TPointD center, const double degree, /* ぼかしの回転角度 */ const double blur_radius, /* ぼかしの始まる半径 */ const double spin_radius, /* ゼロ以上でspin指定となり、 かつぼかし強弱の一定になる半径となる */ const int type, // 0: Accelerator, 1: Uniform Angle, 2: Uniform Length const bool antialias_sw, /* when true, sampled pixel will be bilinear-interpolated */ const bool alpha_rendering_sw, const double ellipse_aspect_ratio, const double ellipse_angle) { /* 強度のないとき */ if (degree <= 0.0) { igs::image::copy_except_margin(in, margin, out, out_dim.ly, out_dim.lx, channels); return; } rotate_convert(in, out, margin, out_dim, channels, ref, center, degree, blur_radius, spin_radius, type, antialias_sw, alpha_rendering_sw, ellipse_aspect_ratio, ellipse_angle); } //-------------------------------------------------------------------- namespace { double reference_margin_length_(const TPointD center, const double xp, const double yp, double radian, const double blur_radius, const double spin_radius, const int type) { const QPointF c(center.x, center.y); const QPointF p(xp, yp); const QVector2D v(p - c); const float dist = v.length(); if (type == Accelerator) { /* 外への強調 */ radian *= (dist - blur_radius) / spin_radius; } else if (type == Uniform_Length && dist > 0.) { // decrease radian so that the blur length becomes // the same along radius radian *= (spin_radius + blur_radius) / dist; radian = std::min(radian, 2. * M_PI); } double cosval = cos(radian / 2.0); double sinval = sin(radian / 2.0); QPointF vrot1(v.x() * cosval - v.y() * sinval, v.x() * sinval + v.y() * cosval); QPointF vrot2(v.x() * cosval + v.y() * sinval, -v.x() * sinval + v.y() * cosval); float dist1 = QVector2D(vrot1 + c - p).length(); float dist2 = QVector2D(vrot2 + c - p).length(); return (dist1 < dist2) ? dist2 : dist1; } } // namespace int igs::rotate_blur::reference_margin( const int height, /* 求める画像(out)の高さ */ const int width, /* 求める画像(out)の幅 */ const TPointD center, const double degree, /* ぼかしの回転角度 */ const double blur_radius, /* ぼかしの始まる半径 */ const double spin_radius, /* ゼロ以上でspin指定となり、 かつぼかし強弱の一定になる半径となる */ const int type, // 0: Accelerator, 1: Uniform Angle, 2: Uniform Length const double ellipse_aspect_ratio) { /* 強度のないとき、なにもしない */ if (degree <= 0.0) { return 0; } double margin1 = 0; double margin2 = 0; double deg = degree; if (180.0 < deg) { deg = 180.0; } margin1 = reference_margin_length_(center, -width / 2.0, -height / 2.0, deg * M_PI_180, blur_radius, spin_radius, type); margin2 = reference_margin_length_(center, -width / 2.0, height / 2.0, deg * M_PI_180, blur_radius, spin_radius, type); if (margin1 < margin2) { margin1 = margin2; } margin2 = reference_margin_length_(center, width / 2.0, -height / 2.0, deg * M_PI_180, blur_radius, spin_radius, type); if (margin1 < margin2) { margin1 = margin2; } margin2 = reference_margin_length_(center, width / 2.0, height / 2.0, deg * M_PI_180, blur_radius, spin_radius, type); if (margin1 < margin2) { margin1 = margin2; } // Consider ellipse deformation. // Instead of precise computing, return the maximum possible value. if (ellipse_aspect_ratio != 1.0) { double axis_x = 2.0 * ellipse_aspect_ratio / (ellipse_aspect_ratio + 1.0); double axis_y = axis_x / ellipse_aspect_ratio; margin1 *= std::max(axis_x, axis_y); } return static_cast(ceil(margin1)); }