/*------------------------------------------------------------- iwa_noise1234.cpp Identical to a public domain code "noise1234.cpp" by Stefan Gustavson. Just changed file name for handling of files. -------------------------------------------------------------*/ /*-- The original code starts here --*/ // Noise1234 // Author: Stefan Gustavson (stegu@itn.liu.se) // // This library is public domain software, released by the author // into the public domain in February 2011. You may do anything // you like with it. You may even remove all attributions, // but of course I'd appreciate it if you kept my name somewhere. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. /** \file \brief Implements the Noise1234 class for producing Perlin noise. \author Stefan Gustavson (stegu@itn.liu.se) */ /* * This implementation is "Improved Noise" as presented by * Ken Perlin at Siggraph 2002. The 3D function is a direct port * of his Java reference code available on www.noisemachine.com * (although I cleaned it up and made the code more readable), * but the 1D, 2D and 4D cases were implemented from scratch * by me. * * This is a highly reusable class. It has no dependencies * on any other file, apart from its own header file. */ #include "iwa_noise1234.h" //#include "noise1234.h" // This is the new and improved, C(2) continuous interpolant #define FADE(t) (t * t * t * (t * (t * 6 - 15) + 10)) #define FASTFLOOR(x) (((x) > 0) ? ((int)x) : ((int)x - 1)) #define LERP(t, a, b) ((a) + (t) * ((b) - (a))) //--------------------------------------------------------------------- // Static data /* * Permutation table. This is just a random jumble of all numbers 0-255, * repeated twice to avoid wrapping the index at 255 for each lookup. * This needs to be exactly the same for all instances on all platforms, * so it's easiest to just keep it as static explicit data. * This also removes the need for any initialisation of this class. * * Note that making this an int[] instead of a char[] might make the * code run faster on platforms with a high penalty for unaligned single * byte addressing. Intel x86 is generally single-byte-friendly, but * some other CPUs are faster with 4-aligned reads. * However, a char[] is smaller, which avoids cache trashing, and that * is probably the most important aspect on most architectures. * This array is accessed a *lot* by the noise functions. * A vector-valued noise over 3D accesses it 96 times, and a * float-valued 4D noise 64 times. We want this to fit in the cache! */ unsigned char Noise1234::perm[] = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180, 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180}; //--------------------------------------------------------------------- /* * Helper functions to compute gradients-dot-residualvectors (1D to 4D) * Note that these generate gradients of more than unit length. To make * a close match with the value range of classic Perlin noise, the final * noise values need to be rescaled. To match the RenderMan noise in a * statistical sense, the approximate scaling values (empirically * determined from test renderings) are: * 1D noise needs rescaling with 0.188 * 2D noise needs rescaling with 0.507 * 3D noise needs rescaling with 0.936 * 4D noise needs rescaling with 0.87 * Note that these noise functions are the most practical and useful * signed version of Perlin noise. To return values according to the * RenderMan specification from the SL noise() and pnoise() functions, * the noise values need to be scaled and offset to [0,1], like this: * float SLnoise = (Noise1234::noise(x,y,z) + 1.0) * 0.5; */ float Noise1234::grad(int hash, float x) { int h = hash & 15; float grad = 1.0 + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if (h & 8) grad = -grad; // and a random sign for the gradient return (grad * x); // Multiply the gradient with the distance } float Noise1234::grad(int hash, float x, float y) { int h = hash & 7; // Convert low 3 bits of hash code float u = h < 4 ? x : y; // into 8 simple gradient directions, float v = h < 4 ? y : x; // and compute the dot product with (x,y). return ((h & 1) ? -u : u) + ((h & 2) ? -2.0 * v : 2.0 * v); } float Noise1234::grad(int hash, float x, float y, float z) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h < 8 ? x : y; // gradient directions, and compute dot product. float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 return ((h & 1) ? -u : u) + ((h & 2) ? -v : v); } float Noise1234::grad(int hash, float x, float y, float z, float t) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h < 24 ? x : y; // gradient directions, and compute dot product. float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) ? -u : u) + ((h & 2) ? -v : v) + ((h & 4) ? -w : w); } //--------------------------------------------------------------------- /** 1D float Perlin noise, SL "noise()" */ float Noise1234::noise(float x) { int ix0, ix1; float fx0, fx1; float s, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x fx0 = x - ix0; // Fractional part of x fx1 = fx0 - 1.0f; ix1 = (ix0 + 1) & 0xff; ix0 = ix0 & 0xff; // Wrap to 0..255 s = FADE(fx0); n0 = grad(perm[ix0], fx0); n1 = grad(perm[ix1], fx1); return 0.188f * (LERP(s, n0, n1)); } //--------------------------------------------------------------------- /** 1D float Perlin periodic noise, SL "pnoise()" */ float Noise1234::pnoise(float x, int px) { int ix0, ix1; float fx0, fx1; float s, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x fx0 = x - ix0; // Fractional part of x fx1 = fx0 - 1.0f; ix1 = ((ix0 + 1) % px) & 0xff; // Wrap to 0..px-1 *and* wrap to 0..255 ix0 = (ix0 % px) & 0xff; // (because px might be greater than 256) s = FADE(fx0); n0 = grad(perm[ix0], fx0); n1 = grad(perm[ix1], fx1); return 0.188f * (LERP(s, n0, n1)); } //--------------------------------------------------------------------- /** 2D float Perlin noise. */ float Noise1234::noise(float x, float y) { int ix0, iy0, ix1, iy1; float fx0, fy0, fx1, fy1; float s, t, nx0, nx1, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x iy0 = FASTFLOOR(y); // Integer part of y fx0 = x - ix0; // Fractional part of x fy0 = y - iy0; // Fractional part of y fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; ix1 = (ix0 + 1) & 0xff; // Wrap to 0..255 iy1 = (iy0 + 1) & 0xff; ix0 = ix0 & 0xff; iy0 = iy0 & 0xff; t = FADE(fy0); s = FADE(fx0); nx0 = grad(perm[ix0 + perm[iy0]], fx0, fy0); nx1 = grad(perm[ix0 + perm[iy1]], fx0, fy1); n0 = LERP(t, nx0, nx1); nx0 = grad(perm[ix1 + perm[iy0]], fx1, fy0); nx1 = grad(perm[ix1 + perm[iy1]], fx1, fy1); n1 = LERP(t, nx0, nx1); return 0.507f * (LERP(s, n0, n1)); } //--------------------------------------------------------------------- /** 2D float Perlin periodic noise. */ float Noise1234::pnoise(float x, float y, int px, int py) { int ix0, iy0, ix1, iy1; float fx0, fy0, fx1, fy1; float s, t, nx0, nx1, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x iy0 = FASTFLOOR(y); // Integer part of y fx0 = x - ix0; // Fractional part of x fy0 = y - iy0; // Fractional part of y fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; ix1 = ((ix0 + 1) % px) & 0xff; // Wrap to 0..px-1 and wrap to 0..255 iy1 = ((iy0 + 1) % py) & 0xff; // Wrap to 0..py-1 and wrap to 0..255 ix0 = (ix0 % px) & 0xff; iy0 = (iy0 % py) & 0xff; t = FADE(fy0); s = FADE(fx0); nx0 = grad(perm[ix0 + perm[iy0]], fx0, fy0); nx1 = grad(perm[ix0 + perm[iy1]], fx0, fy1); n0 = LERP(t, nx0, nx1); nx0 = grad(perm[ix1 + perm[iy0]], fx1, fy0); nx1 = grad(perm[ix1 + perm[iy1]], fx1, fy1); n1 = LERP(t, nx0, nx1); return 0.507f * (LERP(s, n0, n1)); } //--------------------------------------------------------------------- /** 3D float Perlin noise. */ float Noise1234::noise(float x, float y, float z) { int ix0, iy0, ix1, iy1, iz0, iz1; float fx0, fy0, fz0, fx1, fy1, fz1; float s, t, r; float nxy0, nxy1, nx0, nx1, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x iy0 = FASTFLOOR(y); // Integer part of y iz0 = FASTFLOOR(z); // Integer part of z fx0 = x - ix0; // Fractional part of x fy0 = y - iy0; // Fractional part of y fz0 = z - iz0; // Fractional part of z fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; fz1 = fz0 - 1.0f; ix1 = (ix0 + 1) & 0xff; // Wrap to 0..255 iy1 = (iy0 + 1) & 0xff; iz1 = (iz0 + 1) & 0xff; ix0 = ix0 & 0xff; iy0 = iy0 & 0xff; iz0 = iz0 & 0xff; r = FADE(fz0); t = FADE(fy0); s = FADE(fx0); nxy0 = grad(perm[ix0 + perm[iy0 + perm[iz0]]], fx0, fy0, fz0); nxy1 = grad(perm[ix0 + perm[iy0 + perm[iz1]]], fx0, fy0, fz1); nx0 = LERP(r, nxy0, nxy1); nxy0 = grad(perm[ix0 + perm[iy1 + perm[iz0]]], fx0, fy1, fz0); nxy1 = grad(perm[ix0 + perm[iy1 + perm[iz1]]], fx0, fy1, fz1); nx1 = LERP(r, nxy0, nxy1); n0 = LERP(t, nx0, nx1); nxy0 = grad(perm[ix1 + perm[iy0 + perm[iz0]]], fx1, fy0, fz0); nxy1 = grad(perm[ix1 + perm[iy0 + perm[iz1]]], fx1, fy0, fz1); nx0 = LERP(r, nxy0, nxy1); nxy0 = grad(perm[ix1 + perm[iy1 + perm[iz0]]], fx1, fy1, fz0); nxy1 = grad(perm[ix1 + perm[iy1 + perm[iz1]]], fx1, fy1, fz1); nx1 = LERP(r, nxy0, nxy1); n1 = LERP(t, nx0, nx1); return 0.936f * (LERP(s, n0, n1)); } //--------------------------------------------------------------------- /** 3D float Perlin periodic noise. */ float Noise1234::pnoise(float x, float y, float z, int px, int py, int pz) { int ix0, iy0, ix1, iy1, iz0, iz1; float fx0, fy0, fz0, fx1, fy1, fz1; float s, t, r; float nxy0, nxy1, nx0, nx1, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x iy0 = FASTFLOOR(y); // Integer part of y iz0 = FASTFLOOR(z); // Integer part of z fx0 = x - ix0; // Fractional part of x fy0 = y - iy0; // Fractional part of y fz0 = z - iz0; // Fractional part of z fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; fz1 = fz0 - 1.0f; ix1 = ((ix0 + 1) % px) & 0xff; // Wrap to 0..px-1 and wrap to 0..255 iy1 = ((iy0 + 1) % py) & 0xff; // Wrap to 0..py-1 and wrap to 0..255 iz1 = ((iz0 + 1) % pz) & 0xff; // Wrap to 0..pz-1 and wrap to 0..255 ix0 = (ix0 % px) & 0xff; iy0 = (iy0 % py) & 0xff; iz0 = (iz0 % pz) & 0xff; r = FADE(fz0); t = FADE(fy0); s = FADE(fx0); nxy0 = grad(perm[ix0 + perm[iy0 + perm[iz0]]], fx0, fy0, fz0); nxy1 = grad(perm[ix0 + perm[iy0 + perm[iz1]]], fx0, fy0, fz1); nx0 = LERP(r, nxy0, nxy1); nxy0 = grad(perm[ix0 + perm[iy1 + perm[iz0]]], fx0, fy1, fz0); nxy1 = grad(perm[ix0 + perm[iy1 + perm[iz1]]], fx0, fy1, fz1); nx1 = LERP(r, nxy0, nxy1); n0 = LERP(t, nx0, nx1); nxy0 = grad(perm[ix1 + perm[iy0 + perm[iz0]]], fx1, fy0, fz0); nxy1 = grad(perm[ix1 + perm[iy0 + perm[iz1]]], fx1, fy0, fz1); nx0 = LERP(r, nxy0, nxy1); nxy0 = grad(perm[ix1 + perm[iy1 + perm[iz0]]], fx1, fy1, fz0); nxy1 = grad(perm[ix1 + perm[iy1 + perm[iz1]]], fx1, fy1, fz1); nx1 = LERP(r, nxy0, nxy1); n1 = LERP(t, nx0, nx1); return 0.936f * (LERP(s, n0, n1)); } //--------------------------------------------------------------------- /** 4D float Perlin noise. */ float Noise1234::noise(float x, float y, float z, float w) { int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1; float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1; float s, t, r, q; float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x iy0 = FASTFLOOR(y); // Integer part of y iz0 = FASTFLOOR(z); // Integer part of y iw0 = FASTFLOOR(w); // Integer part of w fx0 = x - ix0; // Fractional part of x fy0 = y - iy0; // Fractional part of y fz0 = z - iz0; // Fractional part of z fw0 = w - iw0; // Fractional part of w fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; fz1 = fz0 - 1.0f; fw1 = fw0 - 1.0f; ix1 = (ix0 + 1) & 0xff; // Wrap to 0..255 iy1 = (iy0 + 1) & 0xff; iz1 = (iz0 + 1) & 0xff; iw1 = (iw0 + 1) & 0xff; ix0 = ix0 & 0xff; iy0 = iy0 & 0xff; iz0 = iz0 & 0xff; iw0 = iw0 & 0xff; q = FADE(fw0); r = FADE(fz0); t = FADE(fy0); s = FADE(fx0); nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0); nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0); nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx0 = LERP(r, nxy0, nxy1); nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0); nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0); nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx1 = LERP(r, nxy0, nxy1); n0 = LERP(t, nx0, nx1); nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0); nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0); nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx0 = LERP(r, nxy0, nxy1); nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0); nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0); nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx1 = LERP(r, nxy0, nxy1); n1 = LERP(t, nx0, nx1); return 0.87f * (LERP(s, n0, n1)); } //--------------------------------------------------------------------- /** 4D float Perlin periodic noise. */ float Noise1234::pnoise(float x, float y, float z, float w, int px, int py, int pz, int pw) { int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1; float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1; float s, t, r, q; float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1; ix0 = FASTFLOOR(x); // Integer part of x iy0 = FASTFLOOR(y); // Integer part of y iz0 = FASTFLOOR(z); // Integer part of y iw0 = FASTFLOOR(w); // Integer part of w fx0 = x - ix0; // Fractional part of x fy0 = y - iy0; // Fractional part of y fz0 = z - iz0; // Fractional part of z fw0 = w - iw0; // Fractional part of w fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; fz1 = fz0 - 1.0f; fw1 = fw0 - 1.0f; ix1 = ((ix0 + 1) % px) & 0xff; // Wrap to 0..px-1 and wrap to 0..255 iy1 = ((iy0 + 1) % py) & 0xff; // Wrap to 0..py-1 and wrap to 0..255 iz1 = ((iz0 + 1) % pz) & 0xff; // Wrap to 0..pz-1 and wrap to 0..255 iw1 = ((iw0 + 1) % pw) & 0xff; // Wrap to 0..pw-1 and wrap to 0..255 ix0 = (ix0 % px) & 0xff; iy0 = (iy0 % py) & 0xff; iz0 = (iz0 % pz) & 0xff; iw0 = (iw0 % pw) & 0xff; q = FADE(fw0); r = FADE(fz0); t = FADE(fy0); s = FADE(fx0); nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0); nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0); nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx0 = LERP(r, nxy0, nxy1); nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0); nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0); nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx1 = LERP(r, nxy0, nxy1); n0 = LERP(t, nx0, nx1); nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0); nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0); nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx0 = LERP(r, nxy0, nxy1); nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0); nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1); nxy0 = LERP(q, nxyz0, nxyz1); nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0); nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1); nxy1 = LERP(q, nxyz0, nxyz1); nx1 = LERP(r, nxy0, nxy1); n1 = LERP(t, nx0, nx1); return 0.87f * (LERP(s, n0, n1)); } //---------------------------------------------------------------------