/*! @file relax_snode.c * \brief Identify initial relaxed supernodes * *
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
 * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program for any
 * purpose, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is
 * granted, provided the above notices are retained, and a notice that
 * the code was modified is included with the above copyright notice.
 * 
*/ #include "slu_ddefs.h" /*! \brief * *
 * Purpose
 * =======
 *    relax_snode() - Identify the initial relaxed supernodes, assuming that 
 *    the matrix has been reordered according to the postorder of the etree.
 * 
*/ void relax_snode ( const int n, int *et, /* column elimination tree */ const int relax_columns, /* max no of columns allowed in a relaxed snode */ int *descendants, /* no of descendants of each node in the etree */ int *relax_end /* last column in a supernode */ ) { register int j, parent; register int snode_start; /* beginning of a snode */ ifill (relax_end, n, EMPTY); for (j = 0; j < n; j++) descendants[j] = 0; /* Compute the number of descendants of each node in the etree */ for (j = 0; j < n; j++) { parent = et[j]; if ( parent != n ) /* not the dummy root */ descendants[parent] += descendants[j] + 1; } /* Identify the relaxed supernodes by postorder traversal of the etree. */ for (j = 0; j < n; ) { parent = et[j]; snode_start = j; while ( parent != n && descendants[parent] < relax_columns ) { j = parent; parent = et[j]; } /* Found a supernode with j being the last column. */ relax_end[snode_start] = j; /* Last column is recorded */ j++; /* Search for a new leaf */ while ( descendants[j] != 0 && j < n ) j++; } /*printf("No of relaxed snodes: %d; relaxed columns: %d\n", nsuper, no_relaxed_col); */ }