#!/usr/bin/env python import math import sys import random pi=math.pi e=math.e j=complex(0,1) def fft(f,inv): n=len(f) if n==1: return f for p in 2,3,5: if n%p==0: break else: raise Exception('%s not factorable ' % n) m = n/p Fout=[] for q in range(p): # 0,1 fp = f[q::p] # every p'th time sample Fp = fft( fp ,inv) Fout.extend( Fp ) for u in range(m): scratch = Fout[u::m] # u to end in strides of m for q1 in range(p): k = q1*m + u # indices to Fout above that became scratch Fout[ k ] = scratch[0] # cuz e**0==1 in loop below for q in range(1,p): if inv: t = e ** ( j*2*pi*k*q/n ) else: t = e ** ( -j*2*pi*k*q/n ) Fout[ k ] += scratch[q] * t return Fout def rifft(F): N = len(F) - 1 Z = [0] * (N) for k in range(N): Fek = ( F[k] + F[-k-1].conjugate() ) Fok = ( F[k] - F[-k-1].conjugate() ) * e ** (j*pi*k/N) Z[k] = Fek + j*Fok fp = fft(Z , 1) f = [] for c in fp: f.append(c.real) f.append(c.imag) return f def real_fft( f,inv ): if inv: return rifft(f) N = len(f) / 2 res = f[::2] ims = f[1::2] fp = [ complex(r,i) for r,i in zip(res,ims) ] print 'fft input ', fp Fp = fft( fp ,0 ) print 'fft output ', Fp F = [ complex(0,0) ] * ( N+1 ) F[0] = complex( Fp[0].real + Fp[0].imag , 0 ) for k in range(1,N/2+1): tw = e ** ( -j*pi*(.5+float(k)/N ) ) F1k = Fp[k] + Fp[N-k].conjugate() F2k = Fp[k] - Fp[N-k].conjugate() F2k *= tw F[k] = ( F1k + F2k ) * .5 F[N-k] = ( F1k - F2k ).conjugate() * .5 #F[N-k] = ( F1kp + e ** ( -j*pi*(.5+float(N-k)/N ) ) * F2kp ) * .5 #F[N-k] = ( F1k.conjugate() - tw.conjugate() * F2k.conjugate() ) * .5 F[N] = complex( Fp[0].real - Fp[0].imag , 0 ) return F def main(): #fft_func = fft fft_func = real_fft tvec = [0.309655,0.815653,0.768570,0.591841,0.404767,0.637617,0.007803,0.012665] Ftvec = [ complex(r,i) for r,i in zip( [3.548571,-0.378761,-0.061950,0.188537,-0.566981,0.188537,-0.061950,-0.378761], [0.000000,-1.296198,-0.848764,0.225337,0.000000,-0.225337,0.848764,1.296198] ) ] F = fft_func( tvec,0 ) nerrs= 0 for i in range(len(Ftvec)/2 + 1): if abs( F[i] - Ftvec[i] )> 1e-5: print 'F[%d]: %s != %s' % (i,F[i],Ftvec[i]) nerrs += 1 print '%d errors in forward fft' % nerrs if nerrs: return trec = fft_func( F , 1 ) for i in range(len(trec) ): trec[i] /= len(trec) for i in range(len(tvec) ): if abs( trec[i] - tvec[i] )> 1e-5: print 't[%d]: %s != %s' % (i,tvec[i],trec[i]) nerrs += 1 print '%d errors in reverse fft' % nerrs def make_random(dims=[1]): import Numeric res = [] for i in range(dims[0]): if len(dims)==1: r=random.uniform(-1,1) i=random.uniform(-1,1) res.append( complex(r,i) ) else: res.append( make_random( dims[1:] ) ) return Numeric.array(res) def flatten(x): import Numeric ntotal = Numeric.product(Numeric.shape(x)) return Numeric.reshape(x,(ntotal,)) def randmat( ndims ): dims=[] for i in range( ndims ): curdim = int( random.uniform(2,4) ) dims.append( curdim ) return make_random(dims ) def test_fftnd(ndims=3): import FFT import Numeric x=randmat( ndims ) print 'dimensions=%s' % str( Numeric.shape(x) ) #print 'x=%s' %str(x) xver = FFT.fftnd(x) x2=myfftnd(x) err = xver - x2 errf = flatten(err) xverf = flatten(xver) errpow = Numeric.vdot(errf,errf)+1e-10 sigpow = Numeric.vdot(xverf,xverf)+1e-10 snr = 10*math.log10(abs(sigpow/errpow) ) if snr<80: print xver print x2 print 'SNR=%sdB' % str( snr ) def myfftnd(x): import Numeric xf = flatten(x) Xf = fftndwork( xf , Numeric.shape(x) ) return Numeric.reshape(Xf,Numeric.shape(x) ) def fftndwork(x,dims): import Numeric dimprod=Numeric.product( dims ) for k in range( len(dims) ): cur_dim=dims[ k ] stride=dimprod/cur_dim next_x = [complex(0,0)]*len(x) for i in range(stride): next_x[i*cur_dim:(i+1)*cur_dim] = fft(x[i:(i+cur_dim)*stride:stride],0) x = next_x return x if __name__ == "__main__": try: nd = int(sys.argv[1]) except: nd=None if nd: test_fftnd( nd ) else: sys.exit(0)