/*------------------------------------ Iwa_SpectrumFx 参照画像を位相差として、干渉色を出力する ------------------------------------*/ #include "iwa_spectrumfx.h" #include "iwa_cie_d65.h" #include "iwa_xyz.h" namespace { const float PI = 3.14159265f; } /*------------------------------------ Calculate soap bubble color map ------------------------------------*/ void Iwa_SpectrumFx::calcBubbleMap(float3 *bubbleColor, double frame, bool computeAngularAxis) { int i, j, k; /* bubbleColor[j][k] = [256][3] */ float d; /* Thickness of the film (μm) */ int ram; /* rambda iterator */ float rambda; /* wavelength of light (μm) */ struct REFLECTIVITY { /* transmission and reflection amplitudes for each boundary */ float r_ab, t_ab, r_ba, t_ba; float r_real, r_img; /* reflection amplitude of the film */ float R; /* energy reflectance */ } p, s; float R_final; /* combined energy reflectance */ float phi; /* phase */ float color_x, color_y, color_z; /* xyz color channels */ /* obtain parameters */ float intensity = (float)m_intensity->getValue(frame); float refractiveIndex = (float)m_refractiveIndex->getValue(frame); float thickMax = (float)m_thickMax->getValue(frame); float thickMin = (float)m_thickMin->getValue(frame); float rgbGamma[3] = {(float)m_RGamma->getValue(frame), (float)m_GGamma->getValue(frame), (float)m_BGamma->getValue(frame)}; float lensFactor = (float)m_lensFactor->getValue(frame); float shift = (float)m_spectrumShift->getValue(frame); float fadeWidth = (float)m_loopSpectrumFadeWidth->getValue(frame) / 2.0f; /* for Iwa_SpectrumFx, incident angle is fixed to 0, for Iwa_SoapBubbleFx, compute for all discrete incident angles*/ int i_max = (computeAngularAxis) ? 256 : 1; float3 *bubble_p = bubbleColor; /* for each discrete incident angle */ for (i = 0; i < i_max; i++) { /* incident angle (radian) */ float angle_in = PI / 2.0f / 255.0f * (float)i; /* refraction angle (radian) */ float angle_re = asinf(sinf(angle_in) / refractiveIndex); /* transmission and reflection amplitudes for each boundary, for each * polarization */ float cos_in = cosf(angle_in); float cos_re = cosf(angle_re); // compute the offset in order to make the seam of looped-spectrum curved // along the stripe float seam_offset = 0.0f; if (fadeWidth != 0.0f) { // if the fade width is 0, the seam does not curve float base_light_diff = (thickMax + thickMin) / cosf(asinf(1 / refractiveIndex)); float offset_width = 0.5f * (base_light_diff - thickMax - thickMin); seam_offset = 0.5f * (base_light_diff * cosf(asinf(cosf(angle_in) / refractiveIndex)) - thickMax - thickMin - offset_width); } // P-polarized light p.r_ab = (cos_re - refractiveIndex * cos_in) / (cos_re + refractiveIndex * cos_re); p.t_ab = (1.0f - p.r_ab) / refractiveIndex; p.r_ba = -p.r_ab; p.t_ba = (1.0f + p.r_ab) * refractiveIndex; // S-polarized light s.r_ab = (cos_in - refractiveIndex * cos_re) / (cos_in + refractiveIndex * cos_re); s.t_ab = 1.0f + s.r_ab; s.r_ba = -s.r_ab; s.t_ba = 1.0f - s.r_ab; /* for each discrete thickness */ for (j = 0; j < 256; j++) { // normalize within 0-1 and shift float t = (float)j / 255.0f + shift; // get fractional part t -= std::floor(t); // apply lens factor t = powf(t, lensFactor); float tmp_rgb[2][3]; float tmp_t[2]; float tmp_ratio[2]; if (t < seam_offset - fadeWidth) { tmp_t[0] = t + 1.0f; tmp_t[1] = 0; // unused tmp_ratio[0] = 1.0f; tmp_ratio[1] = 0.0f; } else if (t < seam_offset + fadeWidth) { tmp_t[0] = t; tmp_t[1] = t + 1.0f; tmp_ratio[0] = 0.5f + 0.5f * (t - seam_offset) / fadeWidth; tmp_ratio[1] = 1.0f - tmp_ratio[0]; } else if (t > 1.0f + seam_offset + fadeWidth) { tmp_t[0] = t - 1.0f; tmp_t[1] = 0; // unused tmp_ratio[0] = 1.0f; tmp_ratio[1] = 0.0f; } else if (t > 1.0f + seam_offset - fadeWidth) { tmp_t[0] = t; tmp_t[1] = t - 1.0f; tmp_ratio[0] = 0.5f + 0.5f * (1.0f - t + seam_offset) / fadeWidth; tmp_ratio[1] = 1.0f - tmp_ratio[0]; } else { // no fade tmp_t[0] = t; tmp_t[1] = 0; // unused tmp_ratio[0] = 1.0f; tmp_ratio[1] = 0.0f; } /* compute colors for two thickness values and fade them*/ for (int fadeId = 0; fadeId < 2; fadeId++) { // if composit ratio is 0, skip computing if (tmp_ratio[fadeId] == 0.0f) continue; /* calculate the thickness of film (μm) */ d = thickMin + (thickMax - thickMin) * tmp_t[fadeId]; /* there may be a case that the thickness is smaller than 0 */ if (d < 0.0f) d = 0.0f; /* initialize XYZ color channels */ color_x = 0.0f; color_y = 0.0f; color_z = 0.0f; /* for each wavelength (in the range of visible light, 380nm-710nm) */ for (ram = 0; ram < 34; ram++) { /* wavelength `λ` (μm) */ rambda = 0.38f + 0.01f * (float)ram; /* phase of light */ phi = 4.0f * PI * refractiveIndex * d * cos_re / rambda; /* reflection amplitude of the film for each polarization */ // P-polarized light p.r_real = p.r_ab + p.t_ab * p.r_ba * p.t_ba * cosf(phi); p.r_img = p.t_ab * p.r_ba * p.t_ba * sinf(phi); // S-polarized light s.r_real = s.r_ab + s.t_ab * s.r_ba * s.t_ba * cosf(phi); s.r_img = s.t_ab * s.r_ba * s.t_ba * sinf(phi); p.R = p.r_real * p.r_real + p.r_img * p.r_img; s.R = s.r_real * s.r_real + s.r_img * s.r_img; /* combined energy reflectance */ R_final = (p.R + s.R) / 2.0f; /* accumulate XYZ channel values */ color_x += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 0]; color_y += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 1]; color_z += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 2]; } /* next wavelength (ram) */ tmp_rgb[fadeId][0] = 3.240479f * color_x - 1.537150f * color_y - 0.498535f * color_z; tmp_rgb[fadeId][1] = -0.969256f * color_x + 1.875992f * color_y + 0.041556f * color_z; tmp_rgb[fadeId][2] = 0.055648f * color_x - 0.204043f * color_y + 1.057311f * color_z; /* clamp overflows */ for (k = 0; k < 3; k++) { if (tmp_rgb[fadeId][k] < 0.0f) tmp_rgb[fadeId][k] = 0.0f; /* gamma adjustment */ tmp_rgb[fadeId][k] = powf((tmp_rgb[fadeId][k] / 255.0f), rgbGamma[k]); if (tmp_rgb[fadeId][k] >= 1.0f) tmp_rgb[fadeId][k] = 1.0f; } } bubble_p->x = tmp_rgb[0][0] * tmp_ratio[0] + tmp_rgb[1][0] * tmp_ratio[1]; bubble_p->y = tmp_rgb[0][1] * tmp_ratio[0] + tmp_rgb[1][1] * tmp_ratio[1]; bubble_p->z = tmp_rgb[0][2] * tmp_ratio[0] + tmp_rgb[1][2] * tmp_ratio[1]; bubble_p++; } /*- next thickness d (j) -*/ } /*- next incident angle (i) -*/ } //------------------------------------ Iwa_SpectrumFx::Iwa_SpectrumFx() : m_intensity(1.0) , m_refractiveIndex(1.25) , m_thickMax(1.0) , m_thickMin(0.0) , m_RGamma(1.0) , m_GGamma(1.0) , m_BGamma(1.0) , m_lensFactor(1.0) , m_lightThres(1.0) , m_lightIntensity(1.0) , m_loopSpectrumFadeWidth(0.0) , m_spectrumShift(0.0) { addInputPort("Source", m_input); addInputPort("Light", m_light); bindParam(this, "intensity", m_intensity); bindParam(this, "refractiveIndex", m_refractiveIndex); bindParam(this, "thickMax", m_thickMax); bindParam(this, "thickMin", m_thickMin); bindParam(this, "RGamma", m_RGamma); bindParam(this, "GGamma", m_GGamma); bindParam(this, "BGamma", m_BGamma); bindParam(this, "lensFactor", m_lensFactor); bindParam(this, "lightThres", m_lightThres); bindParam(this, "lightIntensity", m_lightIntensity); bindParam(this, "loopSpectrumFadeWidth", m_loopSpectrumFadeWidth); bindParam(this, "spectrumShift", m_spectrumShift); m_intensity->setValueRange(0.0, 8.0); m_refractiveIndex->setValueRange(1.0, 3.0); m_thickMax->setValueRange(-1.5, 2.0); m_thickMin->setValueRange(-1.5, 2.0); m_RGamma->setValueRange(0.001, 1.0); m_GGamma->setValueRange(0.001, 1.0); m_BGamma->setValueRange(0.001, 1.0); m_lensFactor->setValueRange(0.01, 10.0); m_lightThres->setValueRange(-5.0, 1.0); m_lightIntensity->setValueRange(0.0, 1.0); m_loopSpectrumFadeWidth->setValueRange(0.0, 1.0); m_spectrumShift->setValueRange(-10.0, 10.0); } //------------------------------------ void Iwa_SpectrumFx::doCompute(TTile &tile, double frame, const TRenderSettings &settings) { if (!m_input.isConnected()) return; /*- 薄膜干渉色マップ -*/ float3 *bubbleColor; TDimensionI dim(tile.getRaster()->getLx(), tile.getRaster()->getLy()); /*- 256段階で干渉色を計算 -*/ TRasterGR8P bubbleColor_ras(sizeof(float3) * 256, 1); bubbleColor_ras->lock(); bubbleColor = (float3 *)bubbleColor_ras->getRawData(); /*- シャボン色マップの生成 -*/ calcBubbleMap(bubbleColor, frame); /*- いったん素材をTileに収める -*/ m_input->compute(tile, frame, settings); /*-------------------- ここで、Lightが刺さっていた場合は、Lightのアルファを使用&HDRThresでスクリーン合成 --------------------*/ TRasterP lightRas = 0; if (m_light.isConnected()) { TTile light_tile; m_light->allocateAndCompute(light_tile, tile.m_pos, dim, tile.getRaster(), frame, settings); lightRas = light_tile.getRaster(); lightRas->lock(); } TRaster32P ras32 = (TRaster32P)tile.getRaster(); TRaster64P ras64 = (TRaster64P)tile.getRaster(); { if (ras32) { if (lightRas) convertRasterWithLight( ras32, dim, bubbleColor, (TRaster32P)lightRas, (float)m_lightThres->getValue(frame), (float)m_lightIntensity->getValue(frame)); else convertRaster(ras32, dim, bubbleColor); } else if (ras64) { if (lightRas) convertRasterWithLight( ras64, dim, bubbleColor, (TRaster64P)lightRas, (float)m_lightThres->getValue(frame), (float)m_lightIntensity->getValue(frame)); else convertRaster(ras64, dim, bubbleColor); } } //メモリ解放 // brightness_ras->unlock(); bubbleColor_ras->unlock(); if (lightRas) lightRas->unlock(); } //------------------------------------ template void Iwa_SpectrumFx::convertRaster(const RASTER ras, TDimensionI dim, float3 *bubbleColor) { float rr, gg, bb, aa; float spec_r, spec_g, spec_b; float brightness; for (int j = 0; j < dim.ly; j++) { PIXEL *pix = ras->pixels(j); for (int i = 0; i < dim.lx; i++) { aa = (float)pix->m / PIXEL::maxChannelValue; if (aa == 0.0f) /*- アルファが0なら変化なし -*/ { pix++; continue; } /*- depremutiplyはしないでおく -*/ rr = (float)pix->r / (float)PIXEL::maxChannelValue; gg = (float)pix->g / (float)PIXEL::maxChannelValue; bb = (float)pix->b / (float)PIXEL::maxChannelValue; brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb; /*- 反転 -*/ brightness = 1.0f - brightness; /*- 輝度MAXの場合 -*/ if (brightness >= 1.0f) { spec_r = bubbleColor[255].x * aa; spec_g = bubbleColor[255].y * aa; spec_b = bubbleColor[255].z * aa; } else { /*- 線形補間する -*/ int index = (int)(brightness * 255.0f); float ratio = brightness * 255.0f - (float)index; spec_r = bubbleColor[index].x * (1.0f - ratio) + bubbleColor[index + 1].x * ratio; spec_g = bubbleColor[index].y * (1.0f - ratio) + bubbleColor[index + 1].y * ratio; spec_b = bubbleColor[index].z * (1.0f - ratio) + bubbleColor[index + 1].z * ratio; spec_r *= aa; spec_g *= aa; spec_b *= aa; } /*- 元のピクセルに書き戻す -*/ float val; /*- チャンネル範囲にクランプ -*/ val = spec_r * (float)PIXEL::maxChannelValue + 0.5f; pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = spec_g * (float)PIXEL::maxChannelValue + 0.5f; pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = spec_b * (float)PIXEL::maxChannelValue + 0.5f; pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); pix++; } } } //------------------------------------ template void Iwa_SpectrumFx::convertRasterWithLight(const RASTER ras, TDimensionI dim, float3 *bubbleColor, const RASTER lightRas, float lightThres, float lightIntensity) { float rr, gg, bb, aa; float spec_r, spec_g, spec_b; float brightness; for (int j = 0; j < dim.ly; j++) { PIXEL *light_pix = lightRas->pixels(j); PIXEL *pix = ras->pixels(j); for (int i = 0; i < dim.lx; i++) { aa = (float)light_pix->m / PIXEL::maxChannelValue; if (aa == 0.0f) /*- アルファが0なら透明にする -*/ { *pix = PIXEL::Transparent; light_pix++; pix++; continue; } /*- depremutiplyはしないでおく -*/ rr = (float)pix->r / (float)PIXEL::maxChannelValue; gg = (float)pix->g / (float)PIXEL::maxChannelValue; bb = (float)pix->b / (float)PIXEL::maxChannelValue; brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb; /*- 反転 -*/ brightness = 1.0f - brightness; /*- 輝度MAXの場合 -*/ if (brightness >= 1.0f) { spec_r = bubbleColor[255].x; spec_g = bubbleColor[255].y; spec_b = bubbleColor[255].z; } else { /*- 線形補間する -*/ int index = (int)(brightness * 255.0f); float ratio = brightness * 255.0f - (float)index; spec_r = bubbleColor[index].x * (1.0f - ratio) + bubbleColor[index + 1].x * ratio; spec_g = bubbleColor[index].y * (1.0f - ratio) + bubbleColor[index + 1].y * ratio; spec_b = bubbleColor[index].z * (1.0f - ratio) + bubbleColor[index + 1].z * ratio; } /*- ここで、Light画像とのスクリーン合成を行う -*/ float HDR_Factor; if (aa <= lightThres || lightThres == 1.0f) HDR_Factor = 0.0; else HDR_Factor = lightIntensity * (aa - lightThres) / (1.0 - lightThres); float light_r = (float)light_pix->r / (float)PIXEL::maxChannelValue; float light_g = (float)light_pix->g / (float)PIXEL::maxChannelValue; float light_b = (float)light_pix->b / (float)PIXEL::maxChannelValue; /*- スクリーン合成結果と虹色をHDR_Factorで混ぜる -*/ spec_r = (1.0f - HDR_Factor) * spec_r + HDR_Factor * (spec_r + light_r - spec_r * light_r); spec_g = (1.0f - HDR_Factor) * spec_g + HDR_Factor * (spec_g + light_g - spec_g * light_g); spec_b = (1.0f - HDR_Factor) * spec_b + HDR_Factor * (spec_b + light_b - spec_b * light_b); spec_r *= aa; spec_g *= aa; spec_b *= aa; /*- 元のピクセルに書き戻す -*/ float val; /*- チャンネル範囲にクランプ -*/ val = spec_r * (float)PIXEL::maxChannelValue + 0.5f; pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = spec_g * (float)PIXEL::maxChannelValue + 0.5f; pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = spec_b * (float)PIXEL::maxChannelValue + 0.5f; pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); pix->m = light_pix->m; pix++; light_pix++; } } } /*------------------------------------ 素材タイルを0〜1に正規化して格納 ------------------------------------*/ template void Iwa_SpectrumFx::setSourceRasters(const RASTER ras, float4 *in_out_tile_host, const RASTER light_ras, float4 *light_host, TDimensionI dim, bool useLight) { float4 *chann_p = in_out_tile_host; float4 *lightChann_p = light_host; for (int j = 0; j < dim.ly; j++) { PIXEL *pix = ras->pixels(j); PIXEL *lightPix = (useLight) ? light_ras->pixels(j) : 0; for (int i = 0; i < dim.lx; i++) { (*chann_p).x = (float)pix->r / (float)PIXEL::maxChannelValue; (*chann_p).y = (float)pix->g / (float)PIXEL::maxChannelValue; (*chann_p).z = (float)pix->b / (float)PIXEL::maxChannelValue; (*chann_p).w = (float)pix->m / (float)PIXEL::maxChannelValue; pix++; chann_p++; if (useLight) { (*lightChann_p).x = (float)lightPix->r / (float)PIXEL::maxChannelValue; (*lightChann_p).y = (float)lightPix->g / (float)PIXEL::maxChannelValue; (*lightChann_p).z = (float)lightPix->b / (float)PIXEL::maxChannelValue; (*lightChann_p).w = (float)lightPix->m / (float)PIXEL::maxChannelValue; lightPix++; lightChann_p++; } } } } /*------------------------------------ 出力結果をChannel値に変換してタイルに格納 ------------------------------------*/ template void Iwa_SpectrumFx::outputRasters(const RASTER outRas, float4 *in_out_tile_host, TDimensionI dim) { float4 *chann_p = in_out_tile_host; for (int j = 0; j < dim.ly; j++) { PIXEL *pix = outRas->pixels(j); for (int i = 0; i < dim.lx; i++) { float val; val = (*chann_p).x * (float)PIXEL::maxChannelValue + 0.5f; pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = (*chann_p).y * (float)PIXEL::maxChannelValue + 0.5f; pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = (*chann_p).z * (float)PIXEL::maxChannelValue + 0.5f; pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = (*chann_p).w * (float)PIXEL::maxChannelValue + 0.5f; pix->m = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); pix++; chann_p++; } } } //------------------------------------ bool Iwa_SpectrumFx::doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info) { if (!m_input.isConnected()) { bBox = TRectD(); return false; } return m_input->doGetBBox(frame, bBox, info); } //------------------------------------ bool Iwa_SpectrumFx::canHandle(const TRenderSettings &info, double frame) { return true; } FX_PLUGIN_IDENTIFIER(Iwa_SpectrumFx, "iwa_SpectrumFx")