/*------------------------------------ Iwa_SoapBubbleFx Generates thin film interference colors from two reference images; one is for thickness and the other one is for shape or normal vector distribution of the film. Inherits Iwa_SpectrumFx. ------------------------------------*/ #include "iwa_soapbubblefx.h" #include "iwa_cie_d65.h" #include "iwa_xyz.h" #include "trop.h" #include #include #include #include namespace { const float PI = 3.14159265f; #define INF 1e20 /* less than FLT_MAX */ /* dt of 1d function using squared distance */ static float* dt(float* f, int n, float a = 1.0f) { float* d = new float[n]; int* v = new int[n]; float* z = new float[n + 1]; /* index of rightmost parabola in lower envelope */ int k = 0; /* locations of parabolas in lower envelope */ v[0] = 0; /* locations of boundaries between parabolas */ z[0] = -INF; z[1] = +INF; /* compute lower envelope */ for (int q = 1; q <= n - 1; q++) { /* compute intersection */ float s = ((f[q] / a + q * q) - (f[v[k]] / a + v[k] * v[k])) / (2 * q - 2 * v[k]); while (s <= z[k]) { k--; s = ((f[q] / a + q * q) - (f[v[k]] / a + v[k] * v[k])) / (2 * q - 2 * v[k]); } k++; v[k] = q; z[k] = s; z[k + 1] = +INF; } k = 0; /* fill in values of distance transform */ for (int q = 0; q <= n - 1; q++) { while (z[k + 1] < q) k++; d[q] = a * (q - v[k]) * (q - v[k]) + f[v[k]]; } delete[] v; delete[] z; return d; } } //------------------------------------ Iwa_SoapBubbleFx::Iwa_SoapBubbleFx() : Iwa_SpectrumFx() , m_renderMode(new TIntEnumParam(RENDER_MODE_BUBBLE, "Bubble")) , m_binarize_threshold(0.5) , m_shape_aspect_ratio(1.0) , m_blur_radius(5.0) , m_blur_power(0.5) , m_multi_source(false) , m_mask_center(false) // obsolete , m_center_opacity(1.0) , m_fit_thickness(false) , m_normal_sample_distance(1) , m_noise_sub_depth(3) , m_noise_resolution_s(18.0) , m_noise_resolution_t(5.0) , m_noise_sub_composite_ratio(0.5) , m_noise_evolution(0.0) , m_noise_depth_mix_ratio(0.05) , m_noise_thickness_mix_ratio(0.05) { removeInputPort("Source"); removeInputPort("Light"); /* not used */ addInputPort("Thickness", m_input); addInputPort("Shape", m_shape); addInputPort("Depth", m_depth); bindParam(this, "renderMode", m_renderMode); m_renderMode->addItem(RENDER_MODE_THICKNESS, "Thickness"); m_renderMode->addItem(RENDER_MODE_DEPTH, "Depth"); bindParam(this, "binarizeThresold", m_binarize_threshold); bindParam(this, "shapeAspectRatio", m_shape_aspect_ratio); bindParam(this, "blurRadius", m_blur_radius); bindParam(this, "blurPower", m_blur_power); bindParam(this, "multiSource", m_multi_source); bindParam(this, "maskCenter", m_mask_center, false, true); // obsolete bindParam(this, "centerOpacity", m_center_opacity); bindParam(this, "fitThickness", m_fit_thickness); bindParam(this, "normalSampleDistance", m_normal_sample_distance); bindParam(this, "noiseSubDepth", m_noise_sub_depth); bindParam(this, "noiseResolutionS", m_noise_resolution_s); bindParam(this, "noiseResolutionT", m_noise_resolution_t); bindParam(this, "noiseSubCompositeRatio", m_noise_sub_composite_ratio); bindParam(this, "noiseEvolution", m_noise_evolution); bindParam(this, "noiseDepthMixRatio", m_noise_depth_mix_ratio); bindParam(this, "noiseThicknessMixRatio", m_noise_thickness_mix_ratio); m_binarize_threshold->setValueRange(0.01, 0.99); m_shape_aspect_ratio->setValueRange(0.2, 5.0); m_blur_radius->setMeasureName("fxLength"); m_blur_radius->setValueRange(0.0, 25.0); m_blur_power->setValueRange(0.01, 5.0); m_center_opacity->setValueRange(0.0, 1.0); m_normal_sample_distance->setValueRange(1, 20); m_noise_sub_depth->setValueRange(1, 5); m_noise_resolution_s->setValueRange(1.0, 40.0); m_noise_resolution_t->setValueRange(1.0, 20.0); m_noise_sub_composite_ratio->setValueRange(0.0, 5.0); m_noise_depth_mix_ratio->setValueRange(0.0, 1.0); m_noise_thickness_mix_ratio->setValueRange(0.0, 1.0); } //------------------------------------ void Iwa_SoapBubbleFx::doCompute(TTile& tile, double frame, const TRenderSettings& settings) { if (!m_input.isConnected()) return; if (!m_shape.isConnected() && !m_depth.isConnected()) return; TDimensionI dim(tile.getRaster()->getLx(), tile.getRaster()->getLy()); TRectD bBox(tile.m_pos, TPointD(dim.lx, dim.ly)); QList allocatedRasList; if (m_renderMode->getValue() == RENDER_MODE_DEPTH && m_depth.isConnected()) { m_depth->allocateAndCompute(tile, bBox.getP00(), dim, tile.getRaster(), frame, settings); return; } /* soap bubble color map */ TRasterGR8P bubbleColor_ras(sizeof(float3) * 256 * 256, 1); bubbleColor_ras->lock(); allocatedRasList.append(bubbleColor_ras); float3* bubbleColor_p = (float3*)bubbleColor_ras->getRawData(); if (m_renderMode->getValue() == RENDER_MODE_BUBBLE) calcBubbleMap(bubbleColor_p, frame, true); if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; /* depth map */ TRasterGR8P depth_map_ras(sizeof(float) * dim.lx * dim.ly, 1); depth_map_ras->lock(); allocatedRasList.append(depth_map_ras); float* depth_map_p = (float*)depth_map_ras->getRawData(); /* alpha map */ TRasterGR8P alpha_map_ras(sizeof(float) * dim.lx * dim.ly, 1); alpha_map_ras->lock(); allocatedRasList.append(alpha_map_ras); float* alpha_map_p = (float*)alpha_map_ras->getRawData(); /* region indices */ TRasterGR8P regionIds_ras(sizeof(USHORT) * dim.lx * dim.ly, 1); regionIds_ras->lock(); regionIds_ras->clear(); allocatedRasList.append(regionIds_ras); USHORT* regionIds_p = (USHORT*)regionIds_ras->getRawData(); QList regionBoundingRects; /* if the depth image is connected, use it */ if (m_depth.isConnected()) { TTile depth_tile; m_depth->allocateAndCompute(depth_tile, bBox.getP00(), dim, tile.getRaster(), frame, settings); if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; TRasterP depthRas = depth_tile.getRaster(); depthRas->lock(); TRaster32P depthRas32 = (TRaster32P)depthRas; TRaster64P depthRas64 = (TRaster64P)depthRas; { if (depthRas32) convertToBrightness(depthRas32, depth_map_p, alpha_map_p, dim); else if (depthRas64) convertToBrightness(depthRas64, depth_map_p, alpha_map_p, dim); } depthRas->unlock(); // set one region covering whole camera rect regionBoundingRects.append(QRect(0, 0, dim.lx, dim.ly)); } /* or, use the shape image to obtain pseudo depth */ else { /* m_shape.isConnected */ /* obtain shape image */ TTile shape_tile; { TRaster32P tmp(1, 1); m_shape->allocateAndCompute(shape_tile, bBox.getP00(), dim, tmp, frame, settings); } if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; processShape(frame, shape_tile, depth_map_p, alpha_map_p, regionIds_p, regionBoundingRects, dim, settings); } if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; // conpute thickness TRasterGR8P thickness_map_ras(sizeof(float) * dim.lx * dim.ly, 1); thickness_map_ras->lock(); allocatedRasList.append(thickness_map_ras); float* thickness_map_p = (float*)thickness_map_ras->getRawData(); TRasterP tileRas = tile.getRaster(); TRaster32P ras32 = (TRaster32P)tileRas; TRaster64P ras64 = (TRaster64P)tileRas; if (m_fit_thickness->getValue()) { // Get the original bbox of thickness image TRectD thickBBox; m_input->getBBox(frame, thickBBox, settings); if (thickBBox == TConsts::infiniteRectD) thickBBox = TRectD(tile.m_pos, TDimensionD(tile.getRaster()->getLx(), tile.getRaster()->getLy())); // Compute the thickenss tile. TTile thicknessTile; TDimension thickDim(static_cast(thickBBox.getLx() + 0.5), static_cast(thickBBox.getLy() + 0.5)); m_input->allocateAndCompute(thicknessTile, thickBBox.getP00(), thickDim, tile.getRaster(), frame, settings); if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; TRasterP thickRas = thicknessTile.getRaster(); fitThicknessPatches(thickRas, thickDim, thickness_map_p, dim, regionIds_p, regionBoundingRects); } else { /* compute the thickness input and temporarily store to the tile */ m_input->compute(tile, frame, settings); if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; if (ras32) convertToBrightness(ras32, thickness_map_p, nullptr, dim); else if (ras64) convertToBrightness(ras64, thickness_map_p, nullptr, dim); } if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; /* process noise */ processNoise(thickness_map_p, depth_map_p, dim, frame, settings); if (checkCancelAndReleaseRaster(allocatedRasList, tile, settings)) return; if (ras32) convertToRaster(ras32, thickness_map_p, depth_map_p, alpha_map_p, dim, bubbleColor_p); else if (ras64) convertToRaster(ras64, thickness_map_p, depth_map_p, alpha_map_p, dim, bubbleColor_p); for (int i = 0; i < allocatedRasList.size(); i++) allocatedRasList.at(i)->unlock(); } //------------------------------------ template void Iwa_SoapBubbleFx::convertToBrightness(const RASTER srcRas, float* dst, float* alpha, TDimensionI dim) { float* dst_p = dst; float* alpha_p = alpha; for (int j = 0; j < dim.ly; j++) { PIXEL* pix = srcRas->pixels(j); for (int i = 0; i < dim.lx; i++, dst_p++, pix++) { float r = (float)pix->r / (float)PIXEL::maxChannelValue; float g = (float)pix->g / (float)PIXEL::maxChannelValue; float b = (float)pix->b / (float)PIXEL::maxChannelValue; /* brightness */ *dst_p = 0.298912f * r + 0.586611f * g + 0.114478f * b; if (alpha) { *alpha_p = (float)pix->m / (float)PIXEL::maxChannelValue; alpha_p++; } } } } //------------------------------------ template void Iwa_SoapBubbleFx::convertToRaster(const RASTER ras, float* thickness_map_p, float* depth_map_p, float* alpha_map_p, TDimensionI dim, float3* bubbleColor_p) { int renderMode = m_renderMode->getValue(); float* depth_p = depth_map_p; float* thickness_p = thickness_map_p; float* alpha_p = alpha_map_p; for (int j = 0; j < dim.ly; j++) { PIXEL* pix = ras->pixels(j); for (int i = 0; i < dim.lx; i++, depth_p++, thickness_p++, alpha_p++, pix++) { float alpha = (*alpha_p); if (!m_fit_thickness->getValue()) alpha *= (float)pix->m / (float)PIXEL::maxChannelValue; if (alpha == 0.0f) { /* no change for the transparent pixels */ pix->m = (typename PIXEL::Channel)0; continue; } // thickness and depth render mode if (renderMode != RENDER_MODE_BUBBLE) { float val = alpha * (float)PIXEL::maxChannelValue + 0.5f; pix->m = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); float mapVal = (renderMode == RENDER_MODE_THICKNESS) ? (*thickness_p) : (*depth_p); val = alpha * mapVal * (float)PIXEL::maxChannelValue + 0.5f; typename PIXEL::Channel chanVal = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); pix->r = chanVal; pix->g = chanVal; pix->b = chanVal; continue; } float coordinate[2]; coordinate[0] = 256.0f * std::min(1.0f, *depth_p); coordinate[1] = 256.0f * std::min(1.0f, *thickness_p); int neighbors[2][2]; /* interpolate sampling */ if (coordinate[0] <= 0.5f) neighbors[0][0] = 0; else neighbors[0][0] = (int)std::floor(coordinate[0] - 0.5f); if (coordinate[0] >= 255.5f) neighbors[0][1] = 255; else neighbors[0][1] = (int)std::floor(coordinate[0] + 0.5f); if (coordinate[1] <= 0.5f) neighbors[1][0] = 0; else neighbors[1][0] = (int)std::floor(coordinate[1] - 0.5f); if (coordinate[1] >= 255.5f) neighbors[1][1] = 255; else neighbors[1][1] = (int)std::floor(coordinate[1] + 0.5f); float interp_ratio[2]; interp_ratio[0] = coordinate[0] - 0.5f - std::floor(coordinate[0] - 0.5f); interp_ratio[1] = coordinate[1] - 0.5f - std::floor(coordinate[1] - 0.5f); float3 nColors[4] = { bubbleColor_p[neighbors[0][0] * 256 + neighbors[1][0]], bubbleColor_p[neighbors[0][1] * 256 + neighbors[1][0]], bubbleColor_p[neighbors[0][0] * 256 + neighbors[1][1]], bubbleColor_p[neighbors[0][1] * 256 + neighbors[1][1]]}; float3 color = nColors[0] * (1.0f - interp_ratio[0]) * (1.0f - interp_ratio[1]) + nColors[1] * interp_ratio[0] * (1.0f - interp_ratio[1]) + nColors[2] * (1.0f - interp_ratio[0]) * interp_ratio[1] + nColors[3] * interp_ratio[0] * interp_ratio[1]; /* clamp */ float val = alpha * (float)PIXEL::maxChannelValue + 0.5f; pix->m = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = alpha * color.x * (float)PIXEL::maxChannelValue + 0.5f; pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = alpha * color.y * (float)PIXEL::maxChannelValue + 0.5f; pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); val = alpha * color.z * (float)PIXEL::maxChannelValue + 0.5f; pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue) ? (float)PIXEL::maxChannelValue : val); } } } //------------------------------------ void Iwa_SoapBubbleFx::processShape(double frame, TTile& shape_tile, float* depth_map_p, float* alpha_map_p, USHORT* regionIds_p, QList& regionBoundingRects, TDimensionI dim, const TRenderSettings& settings) { TRaster32P shapeRas = shape_tile.getRaster(); shapeRas->lock(); TRasterGR8P distance_ras(sizeof(float) * dim.lx * dim.ly, 1); distance_ras->lock(); float* distance_p = (float*)distance_ras->getRawData(); float binarize_thres = (float)m_binarize_threshold->getValue(frame); int regionCount = do_binarize(shapeRas, regionIds_p, binarize_thres, distance_p, alpha_map_p, regionBoundingRects, dim); shapeRas->unlock(); if (settings.m_isCanceled && *settings.m_isCanceled) { distance_ras->unlock(); return; } do_distance_transform(distance_p, regionIds_p, regionCount, dim, frame); if (settings.m_isCanceled && *settings.m_isCanceled) { distance_ras->unlock(); return; } float center_opacity = (float)m_center_opacity->getValue(frame); if (center_opacity != 1.0f) applyDistanceToAlpha(distance_p, alpha_map_p, dim, center_opacity); /* create blur filter */ float blur_radius = (float)m_blur_radius->getValue(frame) * std::sqrt(std::abs((float)settings.m_affine.det())); /* if blur radius is 0, set the distance image to the depth image as-is */ if (blur_radius == 0.0f) { float power = (float)m_blur_power->getValue(frame); float* tmp_depth = depth_map_p; float* tmp_dist = distance_p; USHORT* rid_p = regionIds_p; for (int i = 0; i < dim.lx * dim.ly; i++, tmp_depth++, tmp_dist++, rid_p++) { if (*rid_p == 0) *tmp_depth = 0.0f; else *tmp_depth = 1.0f - std::pow(*tmp_dist, power); } distance_ras->unlock(); return; } int blur_filter_size = (int)std::floor(blur_radius) * 2 + 1; TRasterGR8P blur_filter_ras( sizeof(float) * blur_filter_size * blur_filter_size, 1); blur_filter_ras->lock(); float* blur_filter_p = (float*)blur_filter_ras->getRawData(); do_createBlurFilter(blur_filter_p, blur_filter_size, blur_radius); if (settings.m_isCanceled && *settings.m_isCanceled) { blur_filter_ras->unlock(); distance_ras->unlock(); return; } /* blur filtering, normarize & power */ do_applyFilter(depth_map_p, dim, distance_p, regionIds_p, blur_filter_p, blur_filter_size, frame, settings); distance_ras->unlock(); blur_filter_ras->unlock(); } //------------------------------------ int Iwa_SoapBubbleFx::do_binarize(TRaster32P srcRas, USHORT* dst_p, float thres, float* distance_p, float* alpha_map_p, QList& regionBoundingRects, TDimensionI dim) { TPixel32::Channel channelThres = (TPixel32::Channel)(thres * (float)TPixel32::maxChannelValue); USHORT* tmp_p = dst_p; float* tmp_dist = distance_p; float* alpha_p = alpha_map_p; for (int j = 0; j < dim.ly; j++) { TPixel32* pix = srcRas->pixels(j); for (int i = 0; i < dim.lx; i++, pix++, tmp_p++, tmp_dist++, alpha_p++) { (*tmp_p) = (pix->m > channelThres) ? 1 : 0; (*tmp_dist) = (*tmp_p == 1) ? INF : 0.0f; *alpha_p = (float)pix->m / (float)TPixel32::maxChannelValue; } } // label regions when multi bubble option is on if (!m_multi_source->getValue()) { if (m_fit_thickness->getValue()) { regionBoundingRects.append(QRect()); // calc boundingRect of the bubble QPoint topLeft(dim.lx, dim.ly); QPoint bottomRight(0, 0); USHORT* tmp_p = dst_p; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, tmp_p++) { if ((*tmp_p) == 0) continue; if (topLeft.x() > i) topLeft.setX(i); if (bottomRight.x() < i) bottomRight.setX(i); if (topLeft.y() > j) topLeft.setY(j); if (bottomRight.y() < j) bottomRight.setY(j); } } regionBoundingRects.append(QRect(topLeft, bottomRight)); } return 1; } QList lut; for (int i = 0; i < 65536; i++) lut.append(i); tmp_p = dst_p; int regionCount = 0; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, tmp_p++) { if ((*tmp_p) == 1) { int up = (j == 0) ? 0 : *(tmp_p - dim.lx); int left = (i == 0) ? 0 : *(tmp_p - 1); assert(up >= 0 && left >= 0); if (!up && !left) { if (regionCount < 65535) regionCount++; (*tmp_p) = regionCount; } else if (up && !left) (*tmp_p) = up; else if (!up && left) (*tmp_p) = left; else if (up == left) (*tmp_p) = up; else if (up > left) { (*tmp_p) = left; lut[up] = left; } else { (*tmp_p) = up; lut[left] = up; } } } } // organize lut QList convIndex; int currentIndex = 0; for (int i = 0; i < 65536; i++) { if (lut.at(i) == i) { lut[i] = currentIndex; currentIndex++; } else convIndex.append(i); } for (int i = 0; i < convIndex.count(); i++) lut[convIndex.at(i)] = lut.at(lut.at(convIndex.at(i))); // apply lut int maxRegionIndex = 0; tmp_p = dst_p; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, tmp_p++) { (*tmp_p) = lut[*tmp_p]; if (maxRegionIndex < (*tmp_p)) maxRegionIndex = (*tmp_p); } } // compute bounding boxes of each bubble if (m_fit_thickness->getValue()) { regionBoundingRects.append(QRect()); USHORT* tmp_p = dst_p; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, tmp_p++) { int rId = (*tmp_p); if (rId == 0) continue; while (regionBoundingRects.size() <= rId) regionBoundingRects.append(QRect()); if (regionBoundingRects.at(rId).isNull()) regionBoundingRects[rId].setRect(i, j, 1, 1); else { if (regionBoundingRects[rId].left() > i) regionBoundingRects[rId].setLeft(i); if (regionBoundingRects[rId].right() < i) regionBoundingRects[rId].setRight(i); if (regionBoundingRects[rId].top() > j) regionBoundingRects[rId].setTop(j); if (regionBoundingRects[rId].bottom() < j) regionBoundingRects[rId].setBottom(j); } } } } return maxRegionIndex; } //------------------------------------ void Iwa_SoapBubbleFx::do_createBlurFilter(float* dst_p, int size, float radius) { float radius2 = radius * radius; float* tmp_p = dst_p; float sum = 0.0f; int rad = (size - 1) / 2; for (int j = -rad; j <= rad; j++) { for (int i = -rad; i <= rad; i++, tmp_p++) { float length2 = (float)i * (float)i + (float)j * (float)j; /* out of range */ if (length2 >= radius2) *tmp_p = 0.0f; else { /* normalize distace from the filter center, to 0-1 */ *tmp_p = 1.0f - std::sqrt(length2) / radius; sum += *tmp_p; } } } /* normalize */ tmp_p = dst_p; for (int i = 0; i < size * size; i++, tmp_p++) { *tmp_p /= sum; } } //------------------------------------ void Iwa_SoapBubbleFx::do_applyFilter(float* depth_map_p, TDimensionI dim, float* distance_p, USHORT* binarized_p, float* blur_filter_p, int blur_filter_size, double frame, const TRenderSettings& settings) { float power = (float)m_blur_power->getValue(frame); memset(depth_map_p, 0, sizeof(float) * dim.lx * dim.ly); int fil_margin = (blur_filter_size - 1) / 2; float* dst_p = depth_map_p; USHORT* bin_p = binarized_p; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, dst_p++, bin_p++) { if (*bin_p == 0) continue; float* fil_p = blur_filter_p; for (int fy = j - fil_margin; fy <= j + fil_margin; fy++) { if (fy < 0 || fy >= dim.ly) { fil_p += blur_filter_size; continue; } for (int fx = i - fil_margin; fx <= i + fil_margin; fx++, fil_p++) { if (fx < 0 || fx >= dim.lx) continue; *dst_p += *fil_p * distance_p[fy * dim.lx + fx]; } } /* power the value */ *dst_p = 1.0f - std::pow(*dst_p, power); } if (settings.m_isCanceled && *settings.m_isCanceled) return; } } //------------------------------------ void Iwa_SoapBubbleFx::processNoise(float* thickness_map_p, float* depth_map_p, TDimensionI dim, double frame, const TRenderSettings& settings) { float noise_depth_mix_ratio = (float)m_noise_depth_mix_ratio->getValue(frame); float noise_thickness_mix_ratio = (float)m_noise_thickness_mix_ratio->getValue(frame); /* If the noise ratio is 0, do nothing and return */ if (noise_depth_mix_ratio == 0.0f && noise_thickness_mix_ratio == 0.0f) return; int noise_sub_depth = m_noise_sub_depth->getValue(); int noise_resolution_s = (int)m_noise_resolution_s->getValue(frame); int noise_resolution_t = (int)m_noise_resolution_t->getValue(frame); float noise_composite_ratio = (float)m_noise_sub_composite_ratio->getValue(frame); float noise_evolution = (float)m_noise_evolution->getValue(frame); /* initialize the phase map */ QList noise_amount; QList noise_base_resolution; int whole_noise_amount = 0; for (int layer = 0; layer < noise_sub_depth; layer++) { /* noise resolution */ /* width: circumferential direction height:distal direction */ QSize size; size.setWidth(std::pow(2, layer) * noise_resolution_s); size.setHeight(std::pow(2, layer) * noise_resolution_t + 1); noise_base_resolution.append(size); int amount = size.width() * size.height(); noise_amount.append(amount); whole_noise_amount += amount; } float* noise_phases = new float[whole_noise_amount]; float* ph_p = noise_phases; srand(0); /* Set the phase differences (0-2) */ for (int i = 0; i < whole_noise_amount; i++, ph_p++) { *ph_p = (float)rand() / (float)RAND_MAX * 2.0f * PI; } /* make noise base */ /* compute composite ratio of each layer */ QList comp_ratios; comp_ratios.append(10.0f); float ratio_sum = 10.0f; for (int i = 1; i < noise_sub_depth; i++) { comp_ratios.append(comp_ratios.last() * noise_composite_ratio); ratio_sum += comp_ratios.last(); } /* normalize */ for (int i = 0; i < noise_sub_depth; i++) comp_ratios[i] /= ratio_sum; float* noise_base = new float[whole_noise_amount]; float* nb_p = noise_base; ph_p = noise_phases; /* for each sub-noise layer */ for (int layer = 0; layer < noise_sub_depth; layer++) { float tmp_evolution = noise_evolution * (float)(layer + 1); for (int i = 0; i < noise_amount[layer]; i++, nb_p++, ph_p++) { *nb_p = comp_ratios[layer] * (cosf(tmp_evolution + *ph_p) / 2.0f + 0.5f); } } delete[] noise_phases; TRasterGR8P norm_angle_ras(sizeof(float) * dim.lx * dim.ly, 1); norm_angle_ras->lock(); float* norm_angle_p = (float*)norm_angle_ras->getRawData(); calc_norm_angle(norm_angle_p, depth_map_p, dim, settings.m_shrinkX); TRasterGR8P noise_map_ras(sizeof(float) * dim.lx * dim.ly, 1); noise_map_ras->lock(); float* noise_map_p = (float*)noise_map_ras->getRawData(); make_noise_map(noise_map_p, depth_map_p, norm_angle_p, dim, noise_amount, noise_base_resolution, noise_sub_depth, noise_base); norm_angle_ras->unlock(); delete[] noise_base; /* composite with perlin noise */ add_noise(thickness_map_p, depth_map_p, dim, noise_map_p, noise_thickness_mix_ratio, noise_depth_mix_ratio); noise_map_ras->unlock(); } //------------------------------------ void Iwa_SoapBubbleFx::calc_norm_angle(float* norm_angle_p, float* depth_map_p, TDimensionI dim, int shrink) { struct Locals { TDimensionI _dim; const float* _depth_p; float data(int x, int y) { if (x < 0 || _dim.lx <= x || y < 0 || _dim.ly <= y) return 0.0f; return _depth_p[y * _dim.lx + x]; } } locals = {dim, depth_map_p}; int sampleDistance = std::max(1, m_normal_sample_distance->getValue() / shrink); float* dst_p = norm_angle_p; for (int j = 0; j < dim.ly; j++) { int sample_y[2] = {j - sampleDistance, j + sampleDistance}; if (sample_y[0] < 0) sample_y[0] = 0; if (sample_y[1] >= dim.ly) sample_y[1] = dim.ly - 1; for (int i = 0; i < dim.lx; i++, norm_angle_p++) { int sample_x[2] = {i - sampleDistance, i + sampleDistance}; if (sample_x[1] >= dim.lx) sample_x[1] = dim.lx - 1; if (sample_x[0] < 0) sample_x[0] = 0; float gradient[2]; gradient[0] = (locals.data(sample_x[0], j) - locals.data(sample_x[1], j)) / (float)(sample_x[0] - sample_x[1]); gradient[1] = (locals.data(i, sample_y[0]) - locals.data(i, sample_y[1])) / (float)(sample_y[0] - sample_y[1]); if (gradient[0] == 0.0f && gradient[1] == 0.0f) *norm_angle_p = 0.0f; else /* normalize value range to 0-1 */ *norm_angle_p = 0.5f + std::atan2(gradient[0], gradient[1]) / (2.0f * PI); } } } //------------------------------------ void Iwa_SoapBubbleFx::make_noise_map(float* noise_map_p, float* depth_map_p, float* norm_angle_p, TDimensionI dim, const QList& noise_amount, const QList& noise_base_resolution, int noise_sub_depth, float* noise_base) { float* dst_p = noise_map_p; float* depth_p = depth_map_p; float* norm_p = norm_angle_p; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, dst_p++, depth_p++, norm_p++) { /* Obtain coordinate */ /* circumferential direction */ float tmp_s = (*norm_p); /* distal direction */ float tmp_t = std::min(1.0f, *depth_p); /* accumulate noise values */ *dst_p = 0.0f; float* noise_layer_base = noise_base; for (int layer = 0; layer < noise_sub_depth; layer++) { /* obtain pseudo polar coords */ QSize reso = noise_base_resolution.at(layer); float polar_s = tmp_s * (float)(reso.width()); /* because it is circumferential */ float polar_t = tmp_t * (float)(reso.height() - 1); /* first, compute circumferential position and ratio */ int neighbor_s[2]; neighbor_s[0] = (int)std::floor(polar_s); neighbor_s[1] = neighbor_s[0] + 1; if (neighbor_s[0] == reso.width()) neighbor_s[0] = 0; if (neighbor_s[1] >= reso.width()) neighbor_s[1] = 0; float ratio_s = polar_s - std::floor(polar_s); /* second, compute distal position and ratio */ int neighbor_t[2]; neighbor_t[0] = (int)std::floor(polar_t); neighbor_t[1] = neighbor_t[0] + 1; if (neighbor_t[1] == reso.height()) neighbor_t[1] -= 1; float ratio_t = polar_t - std::floor(polar_t); *dst_p += noise_interp(neighbor_s[0], neighbor_s[1], neighbor_t[0], neighbor_t[1], ratio_s, ratio_t, noise_layer_base, reso.width()); /* offset noise pointer */ noise_layer_base += noise_amount[layer]; } } } } //------------------------------------ float Iwa_SoapBubbleFx::noise_interp(int left, int right, int bottom, int top, float ratio_s, float ratio_t, float* noise_layer_base, int noise_dim_x) { struct Locals { int _dim_x; const float* _noise_p; float data(int x, int y) { return _noise_p[y * _dim_x + x]; } } locals = {noise_dim_x, noise_layer_base}; float c_ratio_s = (1.0f - cosf(ratio_s * PI)) * 0.5f; float c_ratio_t = (1.0f - cosf(ratio_t * PI)) * 0.5f; return locals.data(left, bottom) * (1.0f - c_ratio_s) * (1.0f - c_ratio_t) + locals.data(right, bottom) * c_ratio_s * (1.0f - c_ratio_t) + locals.data(left, top) * (1.0f - c_ratio_s) * c_ratio_t + locals.data(right, top) * c_ratio_s * c_ratio_t; } //------------------------------------ void Iwa_SoapBubbleFx::add_noise(float* thickness_map_p, float* depth_map_p, TDimensionI dim, float* noise_map_p, float noise_thickness_mix_ratio, float noise_depth_mix_ratio) { float one_minus_thickness_ratio = 1.0f - noise_thickness_mix_ratio; float one_minus_depth_ratio = 1.0f - noise_depth_mix_ratio; float* tmp_thickness = thickness_map_p; float* tmp_depth = depth_map_p; float* tmp_noise = noise_map_p; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, tmp_thickness++, tmp_depth++, tmp_noise++) { *tmp_thickness = *tmp_noise * noise_thickness_mix_ratio + *tmp_thickness * one_minus_thickness_ratio; *tmp_depth = *tmp_noise * noise_depth_mix_ratio + *tmp_depth * one_minus_depth_ratio; } } } //------------------------------------ void Iwa_SoapBubbleFx::do_distance_transform(float* dst_p, USHORT* binarized_p, int regionCount, TDimensionI dim, double frame) { float ar = (float)m_shape_aspect_ratio->getValue(frame); float* f = new float[std::max(dim.lx, dim.ly)]; QList max_val; for (int r = 0; r <= regionCount; r++) max_val.append(0.0f); float* tmp_dst = dst_p; /* transform along rows */ for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, tmp_dst++) { f[i] = *tmp_dst; } tmp_dst -= dim.lx; float* d = dt(f, dim.lx); for (int i = 0; i < dim.lx; i++, tmp_dst++) { *tmp_dst = d[i]; } delete[] d; } /* transform along columns */ for (int i = 0; i < dim.lx; i++) { for (int j = 0; j < dim.ly; j++) { f[j] = dst_p[j * dim.lx + i]; } float* d = dt(f, dim.ly, ar); /* ar : taking account of the aspect ratio of the shape */ for (int j = 0; j < dim.ly; j++) { dst_p[j * dim.lx + i] = d[j]; int regionId = binarized_p[j * dim.lx + i]; if (d[j] > max_val[regionId]) max_val[regionId] = d[j]; } delete[] d; } tmp_dst = dst_p; for (int r = 0; r <= regionCount; r++) max_val[r] = std::sqrt(max_val[r]); /* square root and normalize */ USHORT* region_p = binarized_p; for (int i = 0; i < dim.lx * dim.ly; i++, tmp_dst++, region_p++) { if (max_val[*region_p] > 0) *tmp_dst = std::sqrt(*tmp_dst) / max_val[*region_p]; } } //------------------------------------ bool Iwa_SoapBubbleFx::checkCancelAndReleaseRaster( const QList& allocatedRasList, TTile& tile, const TRenderSettings& settings) { if (settings.m_isCanceled && *settings.m_isCanceled) { for (int i = 0; i < allocatedRasList.size(); i++) allocatedRasList.at(i)->unlock(); tile.getRaster()->clear(); return true; } else return false; } //------------------------------------ void Iwa_SoapBubbleFx::applyDistanceToAlpha(float* distance_p, float* alpha_map_p, TDimensionI dim, float center_opacity) { float da = 1.0f - center_opacity; float* d_p = distance_p; float* a_p = alpha_map_p; for (int i = 0; i < dim.lx * dim.ly; i++, d_p++, a_p++) { (*a_p) *= 1.0f - (*d_p) * da; } } //------------------------------------ // This will be called in TFx::loadData when obsolete "mask center" value is // loaded void Iwa_SoapBubbleFx::onObsoleteParamLoaded(const std::string& paramName) { if (paramName != "maskCenter") return; // if "mask center" was ON, set a key frame to the center opacity in order to // get the same result. if (m_mask_center->getValue()) m_center_opacity->setValue(0.0, 0.0); } //------------------------------------ // patch the thickness images to each bounding box of the bubble void Iwa_SoapBubbleFx::fitThicknessPatches(TRasterP thickRas, TDimensionI thickDim, float* thickness_map_p, TDimensionI dim, USHORT* regionIds_p, QList& regionBoundingRects) { int regionCount = regionBoundingRects.size() - 1; // compute resized thickness rasters QList resizedThicks; resizedThicks.append(TRasterGR16P()); for (int r = 1; r <= regionCount; r++) { QRect regionRect = regionBoundingRects.at(r); TRaster64P resizedThickness( TDimension(regionRect.width(), regionRect.height())); resizedThickness->lock(); TAffine aff = TScale((double)regionRect.width() / (double)thickDim.lx, (double)regionRect.height() / (double)thickDim.ly); // resample the thickenss TRop::resample(resizedThickness, thickRas, aff); for (int ry = 0; ry < regionRect.height(); ry++) { TPixel64* p = resizedThickness->pixels(ry); for (int rx = 0; rx < regionRect.width(); rx++, p++) { double val = (double)((*p).r) / (double)(TPixel64::maxChannelValue); } } TRasterGR16P thickRas_gray( TDimension(regionRect.width(), regionRect.height())); thickRas_gray->lock(); TRop::convert(thickRas_gray, resizedThickness); resizedThickness->unlock(); resizedThicks.append(thickRas_gray); } float* out_p = thickness_map_p; USHORT* rId_p = regionIds_p; for (int j = 0; j < dim.ly; j++) { for (int i = 0; i < dim.lx; i++, out_p++, rId_p++) { if ((*rId_p) == 0) { (*out_p) = 0.0f; continue; } QRect regionBBox = regionBoundingRects.at((int)(*rId_p)); QPoint coordInRegion(i - regionBBox.left(), j - regionBBox.top()); TPixelGR16 pix = resizedThicks.at((int)(*rId_p)) ->pixels(coordInRegion.y())[coordInRegion.x()]; (*out_p) = (float)pix.value / (float)TPixelGR16::maxChannelValue; } } for (int r = 1; r <= regionCount; r++) resizedThicks.at(r)->unlock(); } //============================================================================== FX_PLUGIN_IDENTIFIER(Iwa_SoapBubbleFx, "iwa_SoapBubbleFx");