//#include "tsystem.h" #include "tmachine.h" #include "tcurves.h" #include "tcommon.h" #include "tregion.h" //#include "tregionutil.h" #include "tstopwatch.h" #include "tstroke.h" #include "tstrokeutil.h" #include "tvectorimageP.h" #include "tdebugmessage.h" #include #include "tcurveutil.h" #include #if !defined(TNZ_LITTLE_ENDIAN) TNZ_LITTLE_ENDIAN undefined !! #endif //----------------------------------------------------------------------------- #ifdef IS_DOTNET #define NULL_ITER list::iterator() #else #define NULL_ITER 0 #endif using namespace std; typedef TVectorImage::IntersectionBranch IntersectionBranch; //----------------------------------------------------------------------------- inline double myRound(double x) { return (1.0 / REGION_COMPUTING_PRECISION) * ((long)(x * REGION_COMPUTING_PRECISION)); } inline TThickPoint myRound(const TThickPoint &p) { return TThickPoint(myRound(p.x), myRound(p.y), p.thick); } void print(list &intersectionList, char *str) { ofstream of(str); of << "***************************" << endl; list::const_iterator it; list::const_iterator it1; int i, j; for (i = 0, it = intersectionList.begin(); it != intersectionList.end(); it++, i++) { of << "***************************" << endl; of << "Intersection#" << i << ": " << it->m_intersection << "numBranches: " << it->m_numInter << endl; of << endl; for (j = 0, it1 = it->m_strokeList.begin(); it1 != it->m_strokeList.end(); it1++, j++) { of << "----Branch #" << j; if (it1->m_edge.m_index < 0) of << "(AUTOCLOSE)"; of << "Intersection at " << it1->m_edge.m_w0 << ": " << ": " << endl; of << "ColorId: " << it1->m_edge.m_styleId << endl; /* TColorStyle* fs = it1->m_edge.m_fillStyle; if (fs==0) of<<"NO color: "<< endl; else { TFillStyleP fp = fs->getFillStyle(); if (fp) { fp-> assert(false) ; else of<<"Color: ("<< colorStyle->getColor().r<<", "<< colorStyle->getColor().g<<", "<< colorStyle->getColor().b<<")"<m_gettingOut ? "OUT" : "IN") << " #" << it1->m_edge.m_index << ": " << endl; // if (it1->m_dead) // of<<"---- DEAD Intersection."; // else { of << "---- NEXT Intersection:"; if (it1->m_nextIntersection != intersectionList.end()) { int dist = std::distance(intersectionList.begin(), it1->m_nextIntersection); of << dist; list::iterator iit = intersectionList.begin(); std::advance(iit, dist); of << " " << std::distance(iit->m_strokeList.begin(), it1->m_nextStroke); } else of << "NULL!!"; of << "---- NEXT Stroke:"; if (it1->m_nextIntersection != intersectionList.end()) of << it1->m_nextStroke->m_edge.m_index; else of << "NULL!!"; } of << endl << endl; } } } void findNearestIntersection(list &interList, const list::iterator &i1, const list::iterator &i2); //----------------------------------------------------------------------------- #ifdef _TOLGO void checkInterList(list &intersectionList) { list::iterator it; list::iterator it1; for (it = intersectionList.begin(); it != intersectionList.end(); it++) { int count = 0; for (it1 = it->m_strokeList.begin(); it1 != it->m_strokeList.end(); it1++) { int val; if (it1->m_nextIntersection != intersectionList.end()) { count++; // assert (it1->m_nextIntersection!=intersectionList.end()); assert(it1->m_nextStroke->m_nextIntersection == it); assert(it1->m_nextStroke->m_nextStroke == it1); // int k = it1->m_edge.m_index; val = std::distance(intersectionList.begin(), it1->m_nextIntersection); } // else // assert(it1->m_nextIntersection==intersectionList.end()); } assert(count == it->m_numInter); } } #else #define checkInterList #endif //----------------------------------------------------------------------------- // void addFakeIntersection(list& intersectionList,TStroke* s, // UINT ii, double w); void addIntersections(IntersectionData &intersectionData, const vector &s, int ii, int jj, const vector &intersections, int numStrokes); void addIntersection(IntersectionData &intData, const vector &s, int ii, int jj, DoublePair intersections, int strokeSize); //----------------------------------------------------------------------------- bool sortBBox(const TStroke *s1, const TStroke *s2) { return s1->getBBox().x0 < s2->getBBox().x0; } //----------------------------------------------------------------------------- void cleanIntersectionMarks(list &interList) { for (list::iterator it1 = interList.begin(); it1 != interList.end(); it1++) for (list::iterator it2 = (*it1).m_strokeList.begin(); it2 != (*it1).m_strokeList.end(); it2++) { it2->m_visited = false; // Ogni ramo della lista viene messo nella condizione // di poter essere visitato if (it2->m_nextIntersection != interList.end()) { it2->m_nextIntersection = interList.end(); // pezza tremenda, da togliere!!! it1->m_numInter--; } } } //----------------------------------------------------------------------------- void cleanNextIntersection(list &interList, TStroke *s) { for (list::iterator it1 = interList.begin(); it1 != interList.end(); it1++) for (list::iterator it2 = (*it1).m_strokeList.begin(); it2 != (*it1).m_strokeList.end(); it2++) if (it2->m_edge.m_s == s) { // if (it2->m_nextIntersection==NULL) // return; //gia' ripulita prima if (it2->m_nextIntersection != interList.end()) { it2->m_nextIntersection = interList.end(); it1->m_numInter--; } it2->m_nextStroke = (*it1).m_strokeList.end(); } } //----------------------------------------------------------------------------- void TVectorImage::Imp::eraseEdgeFromStroke( list::iterator it2) { if (it2->m_edge.m_index >= 0) // elimino il puntatore all'edge nella lista della VIStroke { VIStroke *s; s = m_strokes[it2->m_edge.m_index]; assert(s->m_s == it2->m_edge.m_s); list::iterator iit = s->m_edgeList.begin(), it_e = s->m_edgeList.end(); for (; iit != it_e; ++iit) if ((*iit)->m_w0 == it2->m_edge.m_w0 && (*iit)->m_w1 == it2->m_edge.m_w1) { assert((*iit)->m_toBeDeleted == false); s->m_edgeList.erase(iit); return; } } } //----------------------------------------------------------------------------- list::iterator TVectorImage::Imp::eraseBranch( list::iterator it1, list::iterator it2) { // list::iterator iit1; // list::iterator iit2; list &intList = m_intersectionData.m_intList; if (it2->m_nextIntersection != intList.end()) { list::iterator nextInt = it2->m_nextIntersection; list::iterator nextStroke = it2->m_nextStroke; assert(nextStroke->m_nextIntersection == it1); assert(nextStroke->m_nextStroke == it2); assert(nextStroke != it2); // nextStroke->m_nextIntersection = intList.end(); // nextStroke->m_nextStroke = nextInt->m_strokeList.end(); if (nextStroke->m_nextIntersection != intList.end()) { nextStroke->m_nextIntersection = intList.end(); nextInt->m_numInter--; } // nextInt->m_strokeList.erase(nextStroke);//non posso cancellarla, puo' // servire in futuro! } if (it2->m_nextIntersection != intList.end()) it1->m_numInter--; eraseEdgeFromStroke(it2); it2->m_edge.m_w0 = it2->m_edge.m_w1 = -3; it2->m_edge.m_index = -3; it2->m_edge.m_s = 0; it2->m_edge.m_styleId = -3; list::iterator ret = (*it1).m_strokeList.erase(it2); return ret; } //----------------------------------------------------------------------------- void TVectorImage::Imp::eraseDeadIntersections() { list::iterator it; for (it = m_intersectionData.m_intList.begin(); it != m_intersectionData.m_intList.end();) // la faccio qui, e non nella // eraseIntersection. vedi // commento li'. { list &intList = m_intersectionData.m_intList; if (it->m_strokeList.size() == 1) { eraseBranch(it, (*it).m_strokeList.begin()); assert(it->m_strokeList.empty()); it = intList.erase(it); } else if (it->m_strokeList.size() == 2 && ((*it).m_strokeList.front().m_edge.m_s == (*it).m_strokeList.back().m_edge.m_s && (*it).m_strokeList.front().m_edge.m_w0 == (*it).m_strokeList.back().m_edge.m_w0)) // intersezione // finta { list::iterator it1 = it->m_strokeList.begin(), iit1, iit2; list::iterator it2 = it1; it2++; eraseEdgeFromStroke(it1); eraseEdgeFromStroke(it2); iit1 = (it1->m_nextIntersection == intList.end()) ? NULL_ITER : it1->m_nextStroke; iit2 = (it2->m_nextIntersection == intList.end()) ? NULL_ITER : it2->m_nextStroke; if (iit1 != NULL_ITER && iit2 != NULL_ITER) { iit1->m_edge.m_w1 = iit2->m_edge.m_w0; iit2->m_edge.m_w1 = iit1->m_edge.m_w0; } if (iit1 != NULL_ITER) { iit1->m_nextStroke = iit2; iit1->m_nextIntersection = it2->m_nextIntersection; if (iit1->m_nextIntersection == intList.end()) it1->m_nextIntersection->m_numInter--; } if (iit2 != NULL_ITER) { iit2->m_nextStroke = iit1; iit2->m_nextIntersection = it1->m_nextIntersection; if (iit2->m_nextIntersection == intList.end()) it2->m_nextIntersection->m_numInter--; } it->m_strokeList.clear(); it->m_numInter = 0; it = intList.erase(it); } else ++it; } } //----------------------------------------------------------------------------- void TVectorImage::Imp::doEraseIntersection(int index, vector *toBeDeleted) { list &interList = m_intersectionData.m_intList; list::iterator it1 = interList.begin(); TStroke *deleteIt = 0; while (it1 != interList.end()) { bool removeAutocloses = false; list::iterator it2 = (*it1).m_strokeList.begin(); while (it2 != (*it1).m_strokeList.end()) { IntersectedStroke &is = *it2; if (is.m_edge.m_index == index) { if (is.m_edge.m_index >= 0) // if (!is.m_autoclose && (is.m_edge.m_w0==1 || is.m_edge.m_w0==0)) removeAutocloses = true; else deleteIt = is.m_edge.m_s; it2 = eraseBranch(it1, it2); } else ++it2; // checkInterList(interList); } if (removeAutocloses) // se ho tolto una stroke dall'inter corrente, tolgo // tutti le stroke di autclose che partono da qui { assert(toBeDeleted); for (it2 = (*it1).m_strokeList.begin(); it2 != (*it1).m_strokeList.end(); it2++) if (it2->m_edge.m_index < 0 && (it2->m_edge.m_w0 == 1 || it2->m_edge.m_w0 == 0)) toBeDeleted->push_back(it2->m_edge.m_index); } if ((*it1).m_strokeList.empty()) it1 = interList.erase(it1); else it1++; } if (deleteIt) delete deleteIt; } //----------------------------------------------------------------------------- UINT TVectorImage::Imp::getFillData(IntersectionBranch *&v) { // print(m_intersectionData.m_intList, "C:\\temp\\intersectionPrimaSave.txt"); list &intList = m_intersectionData.m_intList; if (intList.empty()) return 0; list::iterator it1; list::iterator it2; UINT currInt = 0; vector branchesBefore(intList.size() + 1); branchesBefore[0] = 0; UINT count = 0, size = 0; for (it1 = intList.begin(); it1 != intList.end(); ++it1, currInt++) { UINT strokeListSize = it1->m_strokeList.size(); size += strokeListSize; branchesBefore[currInt + 1] = branchesBefore[currInt] + strokeListSize; } v = new IntersectionBranch[size]; currInt = 0; for (it1 = intList.begin(); it1 != intList.end(); ++it1, currInt++) { UINT currBranch = 0; for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end(); ++it2, currBranch++) { IntersectionBranch &b = v[count]; b.m_currInter = currInt; b.m_strokeIndex = it2->m_edge.m_index; b.m_w = it2->m_edge.m_w0; b.m_style = it2->m_edge.m_styleId; // assert(b.m_style<100); b.m_gettingOut = it2->m_gettingOut; if (it2->m_nextIntersection == intList.end()) b.m_nextBranch = count; else { UINT distInt = std::distance(intList.begin(), it2->m_nextIntersection); UINT distBranch = std::distance( it2->m_nextIntersection->m_strokeList.begin(), it2->m_nextStroke); if ((distInt < currInt) || (distInt == currInt && distBranch < currBranch)) { UINT posNext = branchesBefore[distInt] + distBranch; assert(posNext < count); b.m_nextBranch = posNext; assert(v[posNext].m_nextBranch == (std::numeric_limits::max)()); v[posNext].m_nextBranch = count; } else b.m_nextBranch = (std::numeric_limits::max)(); } count++; } } // for (UINT i=0; i::max()); #ifdef _DEBUG /*ofstream of("C:\\temp\\fillDataOut.txt"); for (UINT ii=0; ii &intList, list::iterator it1, list::iterator it2) { bool found = false; list::iterator iit1 = it1; list::iterator iit2; iit1++; // vector vapp; for (; !found && iit1 != intList.end(); iit1++) { for (iit2 = iit1->m_strokeList.begin(); !found && iit2 != iit1->m_strokeList.end(); iit2++) { if (it2->m_edge.m_index == iit2->m_edge.m_index) { if ((iit2->m_edge.m_w0 == 1 && it2->m_edge.m_w0 == 0) || (iit2->m_edge.m_w0 == 0 && it2->m_edge.m_w0 == 1)) { found = true; vector v; if (it2->m_edge.m_w0 == 0) { v.push_back(it1->m_intersection); v.push_back(iit1->m_intersection); } else { v.push_back(iit1->m_intersection); v.push_back(it1->m_intersection); } it2->m_edge.m_s = iit2->m_edge.m_s = new TStroke(v); // for (UINT ii=0; iim_s = it2->m_edge.m_s; } // else if (iit2->m_edge.m_w0!=0 && iit2->m_edge.m_w0!=1) // vapp.push_back(&(iit2->m_edge)); } } } assert(found); if (!found) it2->m_edge.m_s = 0; return it2->m_edge.m_s; } } // namespace //----------------------------------------------------------------------------- void TVectorImage::Imp::setFillData(IntersectionBranch *v, UINT branchCount) { #ifdef _DEBUG /*ofstream of("C:\\temp\\fillDataIn.txt"); for (UINT ii=0; ii &intList = m_intersectionData.m_intList; clearPointerContainer(m_regions); m_regions.clear(); intList.clear(); list::iterator currInt; list::iterator currBranch; vector branchesBefore(v[branchCount - 1].m_currInter + 1); UINT i = 0; for (; i < branchCount; i++) { const IntersectionBranch &b = v[i]; if (i == 0 || v[i].m_currInter != v[i - 1].m_currInter) { assert(i == 0 || v[i].m_currInter == v[i - 1].m_currInter + 1); branchesBefore[v[i].m_currInter] = i; intList.push_back(Intersection()); currInt = intList.begin(); advance(currInt, intList.size() - 1); } IntersectedStroke is; currInt->m_strokeList.push_back(is); currBranch = currInt->m_strokeList.begin(); advance(currBranch, currInt->m_strokeList.size() - 1); currBranch->m_edge.m_styleId = b.m_style; // assert(b.m_style<100); currBranch->m_edge.m_index = b.m_strokeIndex; if (b.m_strokeIndex >= 0) currBranch->m_edge.m_s = m_strokes[b.m_strokeIndex]->m_s; else currBranch->m_edge.m_s = 0; currBranch->m_gettingOut = b.m_gettingOut; currBranch->m_edge.m_w0 = b.m_w; currBranch->m_edge.m_w1 = v[b.m_nextBranch].m_w; assert(currBranch->m_edge.m_w0 >= -1e-8 && currBranch->m_edge.m_w0 <= 1 + 1e-8); assert(currBranch->m_edge.m_w1 >= -1e-8 && currBranch->m_edge.m_w1 <= 1 + 1e-8); if (b.m_nextBranch < i) { list::iterator it1; list::iterator it2; it1 = intList.begin(); std::advance(it1, v[b.m_nextBranch].m_currInter); it2 = it1->m_strokeList.begin(); assert(b.m_nextBranch - branchesBefore[v[b.m_nextBranch].m_currInter] >= 0); std::advance( it2, b.m_nextBranch - branchesBefore[v[b.m_nextBranch].m_currInter]); currBranch->m_nextIntersection = it1; currBranch->m_nextStroke = it2; it2->m_nextIntersection = currInt; it2->m_nextStroke = currBranch; // if (currBranch == currInt->m_strokeList.begin()) // currInt->m_intersection = // currBranch->m_edge.m_s->getPoint(currBranch->m_edge.m_w0); currInt->m_numInter++; it1->m_numInter++; } else if (b.m_nextBranch == i) currBranch->m_nextIntersection = intList.end(); else if (b.m_nextBranch == (std::numeric_limits::max)()) { currBranch->m_nextIntersection = intList.end(); currBranch->m_nextStroke = currInt->m_strokeList.end(); } /* { assert(b.m_nextBranch 0 && v[j].m_currInter == v[j - 1].m_currInter) || j == 0)) j--; if (v[j].m_strokeIndex >= 0) currInt->m_intersection = m_strokes[v[j].m_strokeIndex]->m_s->getPoint(v[j].m_w); } } for (i = 0; i < m_strokes.size(); i++) m_strokes[i]->m_isNewForFill = false; // computeRegions(); list::iterator it1; list::iterator it2; vector toBeDeleted; for (it1 = intList.begin(); it1 != intList.end(); it1++) for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end(); ++it2) { if (it2->m_edge.m_index < 0 && !it2->m_edge.m_s && (it2->m_edge.m_w0 == 0 || it2->m_edge.m_w0 == 1)) { it2->m_edge.m_s = reconstructAutocloseStroke(intList, it1, it2); if (it2->m_edge.m_s) m_intersectionData.m_autocloseMap[it2->m_edge.m_index] = it2->m_edge.m_s; else toBeDeleted.push_back(it2->m_edge.m_index); } } for (it1 = intList.begin(); it1 != intList.end(); it1++) for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end(); ++it2) { if (!it2->m_edge.m_s && it2->m_edge.m_index < 0) { it2->m_edge.m_s = m_intersectionData.m_autocloseMap[it2->m_edge.m_index]; // TEdge& e = it2->m_edge; if (!it2->m_edge.m_s) toBeDeleted.push_back(it2->m_edge.m_index); } } for (i = 0; i < toBeDeleted.size(); i++) eraseIntersection(toBeDeleted[i]); m_areValidRegions = false; computeRegions(); // print(m_intersectionData.m_intList, "C:\\temp\\intersectionDopoLoad.txt"); } //----------------------------------------------------------------------------- void TVectorImage::Imp::eraseIntersection(int index) { vector autocloseStrokes; doEraseIntersection(index, &autocloseStrokes); for (UINT i = 0; i < autocloseStrokes.size(); i++) { doEraseIntersection(autocloseStrokes[i]); assert(autocloseStrokes[i] < 0); m_intersectionData.m_autocloseMap.erase(autocloseStrokes[i]); } } //----------------------------------------------------------------------------- void findNearestIntersection(list &interList) { list::iterator i1; list::iterator i2; for (i1 = interList.begin(); i1 != interList.end(); i1++) { for (i2 = (*i1).m_strokeList.begin(); i2 != (*i1).m_strokeList.end(); i2++) { if ((*i2).m_nextIntersection != interList.end()) // already set continue; int versus = (i2->m_gettingOut) ? 1 : -1; double minDelta = (std::numeric_limits::max)(); list::iterator it1, it1Res; list::iterator it2, it2Res; for (it1 = i1; it1 != interList.end(); ++it1) { if (it1 == i1) it2 = i2, it2++; else it2 = (*it1).m_strokeList.begin(); for (; it2 != (*it1).m_strokeList.end(); ++it2) { if ((*it2).m_edge.m_index == i2->m_edge.m_index && (*it2).m_gettingOut == !i2->m_gettingOut) { double delta = versus * (it2->m_edge.m_w0 - i2->m_edge.m_w0); if (delta > 0 && delta < minDelta) { it1Res = it1; it2Res = it2; minDelta = delta; } } } } if (minDelta != (std::numeric_limits::max)()) { (*it2Res).m_nextIntersection = i1; (*it2Res).m_nextStroke = i2; (*it2Res).m_edge.m_w1 = i2->m_edge.m_w0; (*i2).m_nextIntersection = it1Res; (*i2).m_nextStroke = it2Res; (*i2).m_edge.m_w1 = it2Res->m_edge.m_w0; i1->m_numInter++; it1Res->m_numInter++; } } } } //----------------------------------------------------------------------------- void markDeadIntersections(list &intList, list::iterator it); // questa funzione "cuscinetto" serve perche crashava il compilatore in // release!!! void inline markDeadIntersectionsRic(list &intList, list::iterator it) { markDeadIntersections(intList, it); } //----------------------------------------------------------------------------- void markDeadIntersections(list &intList, list::iterator it) { list::iterator it1 = it->m_strokeList.begin(); if (it->m_numInter == 1) { while (it1->m_nextIntersection == intList.end()) it1++; assert(it1 != it->m_strokeList.end()); list::iterator nextInt = it1->m_nextIntersection; list::iterator nextStroke = it1->m_nextStroke; it->m_numInter = 0; it1->m_nextIntersection = intList.end(); if (nextInt != intList.end() /*&& !nextStroke->m_dead*/) { nextInt->m_numInter--; nextStroke->m_nextIntersection = intList.end(); markDeadIntersectionsRic(intList, nextInt); } } else if (it->m_numInter == 2) // intersezione finta (forse) { while (it1 != it->m_strokeList.end() && it1->m_nextIntersection == intList.end()) it1++; assert(it1 != it->m_strokeList.end()); list::iterator it2 = it1; it2++; while (it2 != it->m_strokeList.end() && it2->m_nextIntersection == intList.end()) it2++; assert(it2 != it->m_strokeList.end()); if (it1->m_edge.m_s == it2->m_edge.m_s && it1->m_edge.m_w0 == it2->m_edge.m_w0) // intersezione finta { list::iterator iit1, iit2; assert(it1->m_nextIntersection != intList.end() && it2->m_nextIntersection != intList.end()); iit1 = it1->m_nextStroke; iit2 = it2->m_nextStroke; iit2->m_edge.m_w1 = iit1->m_edge.m_w0; iit1->m_edge.m_w1 = iit2->m_edge.m_w0; // if (iit1!=0) (*iit1).m_nextStroke = iit2; // if (iit2!=0) (*iit2).m_nextStroke = iit1; // if (iit1!=0) (*iit1).m_nextIntersection = it2->m_nextIntersection; // if (iit2!=0) (*iit2).m_nextIntersection = it1->m_nextIntersection; it->m_numInter = 0; it1->m_nextIntersection = intList.end(); it2->m_nextIntersection = intList.end(); } } } //----------------------------------------------------------------------------- // se cross val era 0, cerco di spostarmi un po' su w per vedere come sono // orientate le tangenti agli stroke... double nearCrossVal(TStroke *s0, double w0, TStroke *s1, double w1) { double ltot0 = s0->getLength(); double ltot1 = s1->getLength(); double dl = tmin(ltot1, ltot0) / 1000; double crossVal, dl0 = dl, dl1 = dl; TPointD p0, p1; int count = 0; if (w0 == 1.0) dl0 = -dl0; if (w1 == 1.0) dl1 = -dl1; double l0 = s0->getLength(w0) + dl0; double l1 = s1->getLength(w1) + dl1; do { p0 = s0->getSpeed(s0->getParameterAtLength(l0)); p1 = s1->getSpeed(s1->getParameterAtLength(l1)); crossVal = cross(p0, p1); l0 += dl0, l1 += dl1; count++; } while (areAlmostEqual(crossVal, 0.0) && ((dl0 > 0 && l0 < ltot0) || (dl0 < 0 && l0 > 0)) && ((dl1 > 0 && l1 < ltot1) || (dl1 < 0 && l1 > 0))); return crossVal; } //----------------------------------------------------------------------------- inline void insertBranch(Intersection &interList, IntersectedStroke &item, bool gettingOut) { if (item.m_edge.m_w0 != (gettingOut ? 1.0 : 0.0)) { item.m_gettingOut = gettingOut; interList.m_strokeList.push_back(item); } } //----------------------------------------------------------------------------- double getAngle(const TPointD &p0, const TPointD &p1) { double angle1 = 180 * atan2(p0.x, p0.y) / TConsts::pi; double angle2 = 180 * atan2(p1.x, p1.y) / TConsts::pi; if (angle1 < 0) angle1 = 360 + angle1; if (angle2 < 0) angle2 = 360 + angle2; return (angle2 - angle1) < 0 ? 360 + angle2 - angle1 : angle2 - angle1; } //----------------------------------------------------------------------------- // nel caso l'angolo tra due stroke in un certo w sia nullo, // si va un po' avanti per vedere come sono orientate.... double getNearAngle(const TStroke *s1, double w1, bool out1, const TStroke *s2, double w2, bool out2) { bool verse1 = (out1 && w1 < 1) || (!out1 && w1 == 0); bool verse2 = (out2 && w2 < 1) || (!out2 && w2 == 0); double ltot1 = s1->getLength(); double ltot2 = s2->getLength(); double l1 = s1->getLength(w1); double l2 = s2->getLength(w2); double dl = min(ltot1, ltot2) / 1000; double dl1 = verse1 ? dl : -dl; double dl2 = verse2 ? dl : -dl; while (((verse1 && l1 < ltot1) || (!verse1 && l1 > 0)) && ((verse2 && l2 < ltot2) || (!verse2 && l2 > 0))) { l1 += dl1; l2 += dl2; TPointD p1 = (out1 ? 1 : -1) * s1->getSpeed(s1->getParameterAtLength(l1)); TPointD p2 = (out2 ? 1 : -1) * s2->getSpeed(s2->getParameterAtLength(l2)); double angle = getAngle(p1, p2); if (!areAlmostEqual(angle, 0, 1e-9)) return angle; } return 0; } //----------------------------------------------------------------------------- bool makeEdgeIntersection(Intersection &interList, IntersectedStroke &item1, IntersectedStroke &item2, const TPointD &p1a, const TPointD &p1b, const TPointD &p2a, const TPointD &p2b) { double angle1 = getAngle(p1a, p1b); double angle2 = getAngle(p1a, p2a); double angle3 = getAngle(p1a, p2b); double angle; bool eraseP1b = false, eraseP2a = false, eraseP2b = false; if (areAlmostEqual(angle1, 0, 1e-9)) { angle1 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true, item1.m_edge.m_s, item1.m_edge.m_w0, false); if (areAlmostEqual(angle1, 1e-9)) eraseP1b = true; } if (areAlmostEqual(angle2, 0, 1e-9)) { angle2 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true, item2.m_edge.m_s, item2.m_edge.m_w0, true); if (areAlmostEqual(angle2, 1e-9)) eraseP2a = true; } if (areAlmostEqual(angle3, 0, 1e-9)) { angle3 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true, item2.m_edge.m_s, item2.m_edge.m_w0, false); if (areAlmostEqual(angle3, 1e-9)) eraseP2b = true; } if (areAlmostEqual(angle1, angle2, 1e-9)) { angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false, item2.m_edge.m_s, item2.m_edge.m_w0, true); if (angle != 0) { angle2 += angle; if (angle2 > 360) angle2 -= 360; } else eraseP2a = true; } if (areAlmostEqual(angle1, angle3, 1e-9)) { angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false, item2.m_edge.m_s, item2.m_edge.m_w0, false); if (angle != 0) { angle3 += angle; if (angle3 > 360) angle3 -= 360; } else eraseP2b = true; } if (areAlmostEqual(angle2, angle3, 1e-9)) { angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false, item2.m_edge.m_s, item2.m_edge.m_w0, true); if (angle != 0) { angle3 += angle; if (angle3 > 360) angle3 -= 360; } else eraseP2b = true; } int fac = (angle1 < angle2) | ((angle1 < angle3) << 1) | ((angle2 < angle3) << 2); switch (fac) { CASE 0 : // p1a p2b p2a p1b insertBranch(interList, item1, true); if (!eraseP2b) insertBranch(interList, item2, false); if (!eraseP2a) insertBranch(interList, item2, true); if (!eraseP1b) insertBranch(interList, item1, false); CASE 1 : // p1a p2b p1b p2a insertBranch(interList, item1, true); if (!eraseP2b) insertBranch(interList, item2, false); if (!eraseP1b) insertBranch(interList, item1, false); if (!eraseP2a) insertBranch(interList, item2, true); CASE 2 : assert(false); CASE 3 : // p1a p1b p2b p2a insertBranch(interList, item1, true); if (!eraseP1b) insertBranch(interList, item1, false); if (!eraseP2b) insertBranch(interList, item2, false); if (!eraseP2a) insertBranch(interList, item2, true); CASE 4 : // p1a p2a p2b p1b insertBranch(interList, item1, true); if (!eraseP2a) insertBranch(interList, item2, true); if (!eraseP2b) insertBranch(interList, item2, false); if (!eraseP1b) insertBranch(interList, item1, false); CASE 5 : assert(false); CASE 6 : // p1a p2a p1b p2b insertBranch(interList, item1, true); if (!eraseP2a) insertBranch(interList, item2, true); if (!eraseP1b) insertBranch(interList, item1, false); if (!eraseP2b) insertBranch(interList, item2, false); CASE 7 : // p1a p1b p2a p2b insertBranch(interList, item1, true); if (!eraseP1b) insertBranch(interList, item1, false); if (!eraseP2a) insertBranch(interList, item2, true); if (!eraseP2b) insertBranch(interList, item2, false); DEFAULT: assert(false); } return true; } //----------------------------------------------------------------------------- bool makeIntersection(IntersectionData &intData, const vector &s, int ii, int jj, DoublePair inter, int strokeSize, Intersection &interList) { IntersectedStroke item1(intData.m_intList.end(), NULL_ITER), item2(intData.m_intList.end(), NULL_ITER); interList.m_intersection = s[ii]->m_s->getPoint(inter.first); item1.m_edge.m_w0 = inter.first; item2.m_edge.m_w0 = inter.second; if (ii >= 0 && ii < strokeSize) { item1.m_edge.m_s = s[ii]->m_s; item1.m_edge.m_index = ii; } else { if (ii < 0) { item1.m_edge.m_s = intData.m_autocloseMap[ii]; item1.m_edge.m_index = ii; } else { item1.m_edge.m_s = s[ii]->m_s; item1.m_edge.m_index = -(ii + intData.maxAutocloseId * 100000); intData.m_autocloseMap[item1.m_edge.m_index] = item1.m_edge.m_s; } } if (jj >= 0 && jj < strokeSize) { item2.m_edge.m_s = s[jj]->m_s; item2.m_edge.m_index = jj; } else { if (jj < 0) { item2.m_edge.m_s = intData.m_autocloseMap[jj]; item2.m_edge.m_index = jj; } else { item2.m_edge.m_s = s[jj]->m_s; item2.m_edge.m_index = -(jj + intData.maxAutocloseId * 100000); intData.m_autocloseMap[item2.m_edge.m_index] = item2.m_edge.m_s; } } bool reversed = false; TPointD p0, p0b, p1, p1b; bool ret1 = item1.m_edge.m_s->getSpeedTwoValues(item1.m_edge.m_w0, p0, p0b); bool ret2 = item2.m_edge.m_s->getSpeedTwoValues(item2.m_edge.m_w0, p1, p1b); if (ret1 || ret2) // punto angoloso!!!! return makeEdgeIntersection(interList, item1, item2, p0, p0b, p1, p1b); double crossVal = cross(p0, p1); // crossVal = cross(p0, p1); if (areAlmostEqual(crossVal, 0.0)) { bool endpoint1 = (item1.m_edge.m_w0 == 0.0 || item1.m_edge.m_w0 == 1.0); bool endpoint2 = (item2.m_edge.m_w0 == 0.0 || item2.m_edge.m_w0 == 1.0); if (endpoint1 && endpoint2 && ((p0.x * p1.x >= 0 && p0.y * p1.y >= 0 && item1.m_edge.m_w0 != item2.m_edge.m_w0) || (p0.x * p1.x <= 0 && p0.y * p1.y <= 0 && item1.m_edge.m_w0 == item2.m_edge.m_w0))) // due endpoint a 180 gradi;metto { item1.m_gettingOut = (item1.m_edge.m_w0 == 0.0); interList.m_strokeList.push_back(item1); item2.m_gettingOut = (item2.m_edge.m_w0 == 0.0); interList.m_strokeList.push_back(item2); return true; } // crossVal = nearCrossVal(item1.m_edge.m_s, item1.m_edge.m_w0, // item2.m_edge.m_s, item2.m_edge.m_w0); // if (areAlmostEqual(crossVal, 0.0)) // return false; return makeEdgeIntersection(interList, item1, item2, p0, p0b, p1, p1b); } if (crossVal > 0) reversed = true; // std::reverse(interList.m_strokeList.begin(), // interList.m_strokeList.end()); if (item1.m_edge.m_w0 != 1.0) { item1.m_gettingOut = true; interList.m_strokeList.push_back(item1); } if (item2.m_edge.m_w0 != (reversed ? 0.0 : 1.0)) { item2.m_gettingOut = !reversed; interList.m_strokeList.push_back(item2); } if (item1.m_edge.m_w0 != 0.0) { item1.m_gettingOut = false; interList.m_strokeList.push_back(item1); } if (item2.m_edge.m_w0 != (reversed ? 1.0 : 0.0)) { item2.m_gettingOut = reversed; interList.m_strokeList.push_back(item2); } return true; } //----------------------------------------------------------------------------- /* void checkAuto(const vector& s) { for (int i=0; i<(int)s.size(); i++) for (int j=i+1; j<(int)s.size(); j++) if (s[i]->m_s->getChunkCount()==1 && s[j]->m_s->getChunkCount()==1) //se ha una sola quadratica, probabilmente e' un autoclose. { const TThickQuadratic*q = s[i]->m_s->getChunk(0); const TThickQuadratic*p = s[j]->m_s->getChunk(0); if (areAlmostEqual(q->getP0(), p->getP0(), 1e-2) && areAlmostEqual(q->getP2(), p->getP2(), 1e-2)) assert(!"eccolo!"); if (areAlmostEqual(q->getP0(), p->getP2(), 1e-2) && areAlmostEqual(q->getP2(), p->getP0(), 1e-2)) assert(!"eccolo!"); } } */ //----------------------------------------------------------------------------- bool addAutocloseIntersection(IntersectionData &intData, vector &s, int ii, int jj, double w0, double w1, int strokeSize) { list::reverse_iterator rit = intData.m_intList.rbegin(); assert(w0 >= 0.0 && w0 <= 1.0); assert(w1 >= 0.0 && w1 <= 1.0); for (; rit != intData.m_intList.rend(); rit++) // evito di fare la connessione, se gia' ce // ne e' una simile tra le stesse due stroke { if (rit->m_strokeList.size() < 2) continue; list::iterator is = rit->m_strokeList.begin(); int s0 = is->m_edge.m_index; if (s0 < 0) continue; double ww0 = is->m_edge.m_w0; is++; if (is->m_edge.m_index == s0 && is->m_edge.m_w0 == ww0) { is++; if (is == rit->m_strokeList.end()) continue; } int s1 = is->m_edge.m_index; if (s1 < 0) continue; double ww1 = is->m_edge.m_w0; if (!((s0 == ii && s1 == jj) || (s0 == jj && s1 == ii))) continue; if (s0 == ii && areAlmostEqual(w0, ww0, 0.1) && areAlmostEqual(w1, ww1, 0.1)) return false; else if (s1 == ii && areAlmostEqual(w0, ww1, 0.1) && areAlmostEqual(w1, ww0, 0.1)) return false; } vector v; v.push_back(s[ii]->m_s->getPoint(w0)); v.push_back(s[jj]->m_s->getPoint(w1)); if (v[0] == v[1]) // le stroke si intersecano , ma la fottuta funzione // intersect non ha trovato l'intersezione(tipicamente, // questo accade agli estremi)!!! { addIntersection(intData, s, ii, jj, DoublePair(w0, w1), strokeSize); return true; } // se gia e' stato messo questo autoclose, evito for (int i = 0; i < (int)s.size(); i++) if (s[i]->m_s->getChunkCount() == 1) // se ha una sola quadratica, probabilmente e' un autoclose. { const TThickQuadratic *q = s[i]->m_s->getChunk(0); if (areAlmostEqual(q->getP0(), v[0], 1e-2) && areAlmostEqual(q->getP2(), v[1], 1e-2) || areAlmostEqual(q->getP0(), v[1], 1e-2) && areAlmostEqual(q->getP2(), v[0], 1e-2)) { return true; addIntersection(intData, s, i, ii, DoublePair(0.0, w0), strokeSize); addIntersection(intData, s, i, jj, DoublePair(1.0, w1), strokeSize); return true; } } s.push_back(new VIStroke(new TStroke(v))); addIntersection(intData, s, s.size() - 1, ii, DoublePair(0.0, w0), strokeSize); addIntersection(intData, s, s.size() - 1, jj, DoublePair(1.0, w1), strokeSize); return true; } //----------------------------------------------------------------------------- double g_autocloseTolerance = c_newAutocloseTolerance; bool makeEndPointConnections(vector &s, int ii, bool isIStartPoint, int jj, bool isJStartPoint, IntersectionData &intData, int strokeSize) { double x0 = (isIStartPoint ? 0.0 : 1.0); double x1 = (isJStartPoint ? 0.0 : 1.0); TThickPoint p0 = s[ii]->m_s->getThickPoint(x0); TThickPoint p1 = s[jj]->m_s->getThickPoint(x1); double dist2; dist2 = tdistance2(p0, p1); if (dist2 >= 0 && dist2 <= tmax((g_autocloseTolerance == c_oldAutocloseTolerance) ? 9.09 : 2.0, g_autocloseTolerance * (p0.thick + p1.thick) * (p0.thick + p1.thick))) // 0.01 tiene conto di quando thick==0 { if (ii == jj) { TRectD r = s[ii]->m_s->getBBox(); // se e' un autoclose su una stroke // piccolissima, creerebbe uan area // trascurabile, ignoro if (fabs(r.x1 - r.x0) < 2 && fabs(r.y1 - r.y0) < 2) return false; } return addAutocloseIntersection(intData, s, ii, jj, x0, x1, strokeSize); } return false; } /* if (s[ii]==s[jj]) return; dist2 = c_autocloseTolerance*tdistance2(p01, p10); if (dist2>0 && dist2<=(p01.thick+p10.thick)*(p01.thick+p10.thick)) addAutocloseIntersection(intData, s, ii, jj, 1.0, 0.0, strokeSize); dist2 = c_autocloseTolerance*tdistance2(p00, p10); if ((dist2>0 && dist2<=(p00.thick+p10.thick)*(p00.thick+p10.thick))) addAutocloseIntersection(intData, s, ii, jj, 0.0, 0.0, strokeSize); dist2 = c_autocloseTolerance*tdistance2(p01, p11); if ((dist2>0 && dist2<=(p01.thick+p11.thick)*(p01.thick+p11.thick))) addAutocloseIntersection(intData, s, ii, jj, 1.0, 1.0, strokeSize); } */ //----------------------------------------------------------------------------- double getCurlW(TStroke *s, bool isBegin) // trova il punto di split su una // stroke, in prossimita di un // ricciolo; // un ricciolo c'e' se la curva ha un min o max relativo su x seguito da uno su // y, o viceversa. { int numChunks = s->getChunkCount(); double dx2, dx1 = 0, dy2, dy1 = 0; for (int i = 0; i < numChunks; i++) { const TQuadratic *q = s->getChunk(isBegin ? i : numChunks - 1 - i); dy2 = q->getP1().y - q->getP0().y; if (dy1 * dy2 < 0) break; dy1 = dy2; dy2 = q->getP2().y - q->getP1().y; if (dy1 * dy2 < 0) break; dy1 = dy2; } if (i == numChunks) return -1; int maxMin0 = isBegin ? i : numChunks - 1 - i; for (int j = 0; j < numChunks; j++) { const TQuadratic *q = s->getChunk(isBegin ? j : numChunks - 1 - j); dx2 = q->getP1().x - q->getP0().x; if (dx1 * dx2 < 0) break; dx1 = dx2; dx2 = q->getP2().x - q->getP1().x; if (dx1 * dx2 < 0) break; dx1 = dx2; } if (j == numChunks) return -1; int maxMin1 = isBegin ? j : numChunks - 1 - j; return getWfromChunkAndT( s, isBegin ? tmax(maxMin0, maxMin1) : tmin(maxMin0, maxMin1), isBegin ? 1.0 : 0.0); } #ifdef Levo bool lastIsX = false, lastIsY = false; for (int i = 0; i < numChunks; i++) { const TThickQuadratic *q = s->getChunk(isBegin ? i : numChunks - 1 - i); if ((q->getP0().y < q->getP1().y && q->getP2().y < q->getP1().y) || // la quadratica ha un minimo o massimo relativo (q->getP0().y > q->getP1().y && q->getP2().y > q->getP1().y)) { double w = getWfromChunkAndT(s, isBegin ? i : numChunks - 1 - i, isBegin ? 1.0 : 0.0); if (lastIsX) // e' il secondo min o max relativo return w; lastIsX = false; lastIsY = true; } else if ((q->getP0().x < q->getP1().x && q->getP2().x < q->getP1() .x) || // la quadratica ha un minimo o massimo relativo (q->getP0().x > q->getP1().x && q->getP2().x > q->getP1().x)) { double w = getWfromChunkAndT(s, isBegin ? i : numChunks - 1 - i, isBegin ? 1.0 : 0.0); if (lastIsY) // e' il secondo min o max relativo return w; lastIsX = true; lastIsY = false; } } return -1; } #endif //----------------------------------------------------------------------------- void makeConnection(vector &s, int ii, int jj, bool isBegin, IntersectionData &intData, int strokeSize) { if (s[ii]->m_s->isSelfLoop()) return; double w0 = isBegin ? 0.0 : 1.0; TThickPoint p0 = s[ii]->m_s->getThickPoint(w0); double t, dist2; int index; TStroke sAux, *sComp; if (ii == jj) // per trovare le intersezioni con una stroke e se stessa, si // toglie il // pezzo di stroke di cui si cercano vicinanze fino alla prima curva { double w = getCurlW(s[ii]->m_s, isBegin); if (w == -1) return; split(*(s[ii]->m_s), tmin(isBegin ? 1.0 : 0.0, w), tmax(isBegin ? 1.0 : 0.0, w), sAux); sComp = &sAux; } else sComp = s[jj]->m_s; if (sComp->getNearestChunk(p0, t, index, dist2) && dist2 > 0) { if (ii == jj) { double dummy; s[jj]->m_s->getNearestChunk(sComp->getChunk(index)->getPoint(t), t, index, dummy); } // if (areAlmostEqual(w, 0.0, 0.05) || areAlmostEqual(w, 1.0, 0.05)) // return; //se w e' vicino ad un estremo, rientra nell'autoclose point to // point // if (s[jj]->m_s->getLength(w)<=s[jj]->m_s->getThickPoint(0).thick || // s[jj]->m_s->getLength(w, 1)<=s[jj]->m_s->getThickPoint(1).thick) // return; TThickPoint p1 = s[jj]->m_s->getChunk(index)->getThickPoint(t); if (dist2 <= (tmax( (g_autocloseTolerance == c_oldAutocloseTolerance) ? 9.09 : 2.0, (g_autocloseTolerance + 0.7) * (p0.thick + p1.thick) * (p0.thick + p1.thick)))) // 0.01 tiene conto di quando thick==0 { // if (areAlmostEqual(dist2, 0.0)) // return; double w = getWfromChunkAndT(s[jj]->m_s, index, t); addAutocloseIntersection(intData, s, ii, jj, w0, w, strokeSize); } } } //----------------------------------------------------------------------------- void autoclose(vector &s, int ii, int jj, IntersectionData &IntData, int strokeSize) { bool ret1 = false, ret2 = false, ret3 = false, ret4 = false; if (!s[ii]->m_s->isSelfLoop() && !s[jj]->m_s->isSelfLoop()) { ret1 = makeEndPointConnections(s, ii, true, jj, false, IntData, strokeSize); if (ii != jj) { ret2 = makeEndPointConnections(s, ii, true, jj, true, IntData, strokeSize); ret3 = makeEndPointConnections(s, ii, false, jj, true, IntData, strokeSize); ret4 = makeEndPointConnections(s, ii, false, jj, false, IntData, strokeSize); } } if (!ret1 && !ret2) makeConnection(s, ii, jj, true, IntData, strokeSize); if (!ret1 && !ret4) makeConnection(s, jj, ii, false, IntData, strokeSize); if (ii != jj) { if (!ret2 && !ret3) makeConnection(s, jj, ii, true, IntData, strokeSize); if (!ret3 && !ret4) makeConnection(s, ii, jj, false, IntData, strokeSize); } } //----------------------------------------------------------------------------- TPointD inline getTangent(const IntersectedStroke &item) { return (item.m_gettingOut ? 1 : -1) * item.m_edge.m_s->getSpeed(item.m_edge.m_w0, item.m_gettingOut); } //----------------------------------------------------------------------------- void addBranch(IntersectionData &intData, list &strokeList, const vector &s, int ii, double w, int strokeSize, bool gettingOut) { list::iterator it1, it2; TPointD tanRef, lastTan; IntersectedStroke item(intData.m_intList.end(), strokeList.end()); if (ii < 0) { item.m_edge.m_s = intData.m_autocloseMap[ii]; item.m_edge.m_index = ii; } else { item.m_edge.m_s = s[ii]->m_s; if (ii < strokeSize) item.m_edge.m_index = ii; else { item.m_edge.m_index = -(ii + intData.maxAutocloseId * 100000); intData.m_autocloseMap[item.m_edge.m_index] = item.m_edge.m_s; } } item.m_edge.m_w0 = w; item.m_gettingOut = gettingOut; /* if (strokeList.size()==2) //potrebbero essere orientati male; due branch possono stare come vogliono, ma col terzo no. { TPointD tan2 = getTangent(strokeList.back()); TPointD aux= getTangent(*(strokeList.begin())); double crossVal = cross(aux, tan2); if (areAlmostEqual(aux, tan2, 1e-3)) return; if (crossVal>0) { std::reverse(strokeList.begin(), strokeList.end()); //tan2 = getTangent(strokeList.back()); } } */ /* if (areAlmostEqual(lastCross, 0.0) && tan1.x*tan2.x>=0 && tan1.y*tan2.y>=0) //significa angolo tra tangenti nullo { crossVal = nearCrossVal(item.m_edge.m_s, item.m_edge.m_w0, strokeList.back().m_edge.m_s, strokeList.back().m_edge.m_w0); if (areAlmostEqual(crossVal, 0.0)) return; if (!strokeList.back().m_gettingOut) crossVal = -crossVal; } */ tanRef = getTangent(item); lastTan = getTangent(strokeList.back()); /* for (it=strokeList.begin(); it!=strokeList.end(); ++it) { TPointD curTan = getTangent(*it); double angle0 = getAngle(lastTan, curTan); double angle1 = getAngle(lastTan, tanRef); if (areAlmostEqual(angle0, angle1, 1e-8)) { double angle = getNearAngle( it->m_edge.m_s, it->m_edge.m_w0, it->m_gettingOut, item.m_edge.m_s, item.m_edge.m_w0, item.m_gettingOut); angle1 += angle; if (angle1>360) angle1-=360; } if (angle1m_edge.m_s, it2->m_edge.m_w0, it2->m_gettingOut, item.m_edge.m_s, item.m_edge.m_w0, item.m_gettingOut); angle1 += angle; if (angle1 > 360) angle1 -= 360; } if (areAlmostEqual(angle0, angle1, 1e-8)) { double angle = getNearAngle(it1->m_edge.m_s, it1->m_edge.m_w0, it1->m_gettingOut, item.m_edge.m_s, item.m_edge.m_w0, item.m_gettingOut); angle1 += angle; if (angle1 > 360) angle1 -= 360; } if (angle1 < angle0) { strokeList.insert(it1, item); return; } lastTan = curTan; it2 = it1; } // assert(!"add branch: can't find where to insert!"); strokeList.push_back(item); } //----------------------------------------------------------------------------- void addBranches(IntersectionData &intData, Intersection &intersection, const vector &s, int ii, int jj, DoublePair intersectionPair, int strokeSize) { bool foundS1 = false, foundS2 = false; list::iterator it; assert(!intersection.m_strokeList.empty()); for (it = intersection.m_strokeList.begin(); it != intersection.m_strokeList.end(); it++) { if ((ii >= 0 && (*it).m_edge.m_s == s[ii]->m_s && it->m_edge.m_w0 == intersectionPair.first) || (ii < 0 && (*it).m_edge.m_index == ii && it->m_edge.m_w0 == intersectionPair.first)) foundS1 = true; if ((jj >= 0 && (*it).m_edge.m_s == s[jj]->m_s && it->m_edge.m_w0 == intersectionPair.second) || (jj < 0 && (*it).m_edge.m_index == jj && it->m_edge.m_w0 == intersectionPair.second)) foundS2 = true; } if (foundS1 && foundS2) { /* //errore!(vedi commento sotto) possono essere un sacco di intersezioni coincidenti se passano per l'estremo di una quad //significa che ci sono due intersezioni coincidenti. cioe' due stroke tangenti. quindi devo invertire l'ordine di due branch enlla rosa dei branch. list::iterator it1, it2; it1=intersection.m_strokeList.begin(); it2 = it1; it2++; for (; it2!=intersection.m_strokeList.end(); ++it1, ++it2) { if ((*it1).m_gettingOut!=(*it2).m_gettingOut &&((*it1).m_edge.m_index==jj && (*it2).m_edge.m_index==ii) || ((*it1).m_edge.m_index==ii && (*it2).m_edge.m_index==jj)) { IntersectedStroke& el1 = (*it1); IntersectedStroke& el2 = (*it2); IntersectedStroke app; app = el1; el1=el2; el2=app; break; } } */ return; } if (!foundS1) { if (intersectionPair.first != 1) addBranch(intData, intersection.m_strokeList, s, ii, intersectionPair.first, strokeSize, true); if (intersectionPair.first != 0) addBranch(intData, intersection.m_strokeList, s, ii, intersectionPair.first, strokeSize, false); // assert(intersection.m_strokeList.size()-size>0); } if (!foundS2) { if (intersectionPair.second != 1) addBranch(intData, intersection.m_strokeList, s, jj, intersectionPair.second, strokeSize, true); if (intersectionPair.second != 0) addBranch(intData, intersection.m_strokeList, s, jj, intersectionPair.second, strokeSize, false); // intersection.m_numInter+=intersection.m_strokeList.size()-size; // assert(intersection.m_strokeList.size()-size>0); } } //----------------------------------------------------------------------------- void addIntersections(IntersectionData &intData, const vector &s, int ii, int jj, vector &intersections, int strokeSize) { for (int k = 0; k < (int)intersections.size(); k++) { if (ii >= strokeSize && (areAlmostEqual(intersections[k].first, 0.0) || areAlmostEqual(intersections[k].first, 1.0))) continue; if (jj >= strokeSize && (areAlmostEqual(intersections[k].second, 0.0) || areAlmostEqual(intersections[k].second, 1.0))) continue; addIntersection(intData, s, ii, jj, intersections[k], strokeSize); } } //----------------------------------------------------------------------------- inline double truncate(double x) { x += 1.0; unsigned long *l = (unsigned long *)&x; #if TNZ_LITTLE_ENDIAN l[0] &= 0xFFE00000; #else l[1] &= 0xFFE00000; #endif return x - 1.0; } //----------------------------------------------------------------------------- void addIntersection(IntersectionData &intData, const vector &s, int ii, int jj, DoublePair intersection, int strokeSize) { list::iterator it; TPointD p; // UINT iw; // iw = ((UINT)(intersection.first*0x3fffffff)); // intersection.first = truncate(intersection.first); // iw = (UINT)(intersection.second*0x3fffffff); // intersection.second = truncate(intersection.second); if (areAlmostEqual(intersection.first, 0.0, 1e-8)) intersection.first = 0.0; else if (areAlmostEqual(intersection.first, 1.0, 1e-8)) intersection.first = 1.0; if (areAlmostEqual(intersection.second, 0.0, 1e-8)) intersection.second = 0.0; else if (areAlmostEqual(intersection.second, 1.0, 1e-8)) intersection.second = 1.0; p = s[ii]->m_s->getPoint(intersection.first); for (it = intData.m_intList.begin(); it != intData.m_intList.end(); it++) if ((*it).m_intersection == p) // devono essere rigorosamente uguali, altrimenti // il calcolo dell'ordine dei rami con le tangenti sballa { addBranches(intData, *it, s, ii, jj, intersection, strokeSize); return; } intData.m_intList.push_back(Intersection()); if (!makeIntersection(intData, s, ii, jj, intersection, strokeSize, intData.m_intList.back())) { list::iterator it = intData.m_intList.begin(); advance(it, intData.m_intList.size() - 1); intData.m_intList.erase(it); } } //----------------------------------------------------------------------------- void TVectorImage::Imp::findIntersections() { vector &strokeArray = m_strokes; IntersectionData &intData = m_intersectionData; int strokeSize = (int)strokeArray.size(); int i, j; assert(intData.m_intersectedStrokeArray.empty()); intData.maxAutocloseId++; map::iterator it, it_b = intData.m_autocloseMap.begin(); map::iterator it_e = intData.m_autocloseMap.end(); // prima cerco le intersezioni tra nuove strokes e vecchi autoclose for (i = 0; i < strokeSize; i++) { TStroke *s1 = strokeArray[i]->m_s; if (!strokeArray[i]->m_isNewForFill || strokeArray[i]->m_isPoint) continue; TRectD bBox = s1->getBBox(); double thick2 = s1->getThickPoint(0).thick * 2; if (bBox.getLx() <= thick2 && bBox.getLy() <= thick2) { strokeArray[i]->m_isPoint = true; continue; } for (int j = 0; j < (int)s1->getControlPointCount(); j++) { TThickPoint p = s1->getControlPoint(j); s1->setControlPoint(j, myRound(p)); } for (it = it_b; it != it_e; ++it) { TStroke *s2 = it->second; vector parIntersections; if (intersect(s1, s2, parIntersections, true)) addIntersections(intData, strokeArray, i, it->first, parIntersections, strokeSize); } } // poi, intersezioni tra stroke, in cui almeno uno dei due deve essere nuovo for (i = 0; i < strokeSize; i++) { TStroke *s1 = strokeArray[i]->m_s; if (strokeArray[i]->m_isPoint) continue; for (j = i; j < strokeSize /*&& (strokeArray[i]->getBBox().x1>= strokeArray[j]->getBBox().x0)*/ ; j++) { TStroke *s2 = strokeArray[j]->m_s; if (strokeArray[j]->m_isPoint) continue; if (!(strokeArray[i]->m_isNewForFill || strokeArray[j]->m_isNewForFill)) continue; vector parIntersections; if (s1->getBBox().overlaps(s2->getBBox())) { UINT size = intData.m_intList.size(); if (intersect(s1, s2, parIntersections, false)) { // if (i==0 && j==1) parIntersections.erase(parIntersections.begin()); addIntersections(intData, strokeArray, i, j, parIntersections, strokeSize); } // autoclose(strokeArray, i, j, intData, strokeSize); if (!strokeArray[i]->m_isNewForFill && size != intData.m_intList.size() && !strokeArray[i]->m_edgeList.empty()) // aggiunte nuove intersezioni { intData.m_intersectedStrokeArray.push_back(IntersectedStrokeEdges(i)); list &_list = intData.m_intersectedStrokeArray.back().m_edgeList; list::const_iterator it; for (it = strokeArray[i]->m_edgeList.begin(); it != strokeArray[i]->m_edgeList.end(); ++it) _list.push_back(new TEdge(**it, false)); } } } // strokeArray[i]->m_isNewForFill = false; } for (i = 0; i < strokeSize; i++) { TStroke *s1 = strokeArray[i]->m_s; if (strokeArray[i]->m_isPoint) continue; for (j = i; j < strokeSize; j++) { TStroke *s2 = strokeArray[j]->m_s; if (strokeArray[j]->m_isPoint) continue; if (!(strokeArray[i]->m_isNewForFill || strokeArray[j]->m_isNewForFill)) continue; if (s1->getBBox().overlaps(s2->getBBox())) autoclose(strokeArray, i, j, intData, strokeSize); } strokeArray[i]->m_isNewForFill = false; } for (i = 0; i < strokeSize; i++) { list::iterator it, it_b = strokeArray[i]->m_edgeList.begin(), it_e = strokeArray[i]->m_edgeList.end(); for (it = it_b; it != it_e; ++it) if ((*it)->m_toBeDeleted == 1) delete *it; strokeArray[i]->m_edgeList.clear(); } // si devono cercare le intersezioni con i segmenti aggiunti per l'autoclose for (i = strokeSize; i < (int)strokeArray.size(); ++i) { TStroke *s1 = strokeArray[i]->m_s; for (j = i + 1; j < (int)strokeArray.size(); ++j) // intersezione segmento-segmento { TStroke *s2 = strokeArray[j]->m_s; vector parIntersections; if (intersect(s1, s2, parIntersections, true)) addIntersections(intData, strokeArray, i, j, parIntersections, strokeSize); } for (j = 0; j < strokeSize; ++j) // intersezione segmento-curva { if (strokeArray[j]->m_isPoint) continue; TStroke *s2 = strokeArray[j]->m_s; vector parIntersections; if (intersect(s1, s2, parIntersections, true)) addIntersections(intData, strokeArray, i, j, parIntersections, strokeSize); } } } // la struttura delle intersezioni viene poi visitata per trovare // i link tra un'intersezione e la successiva //----------------------------------------------------------------------------- int TVectorImage::Imp::computeIntersections() { list::iterator it1; list::iterator it2; IntersectionData &intData = m_intersectionData; int strokeSize = (int)m_strokes.size(); findIntersections(); findNearestIntersection(intData.m_intList); // for (it1=intData.m_intList.begin(); it1!=intData.m_intList.end();) //la // faccio qui, e non nella eraseIntersection. vedi commento li'. eraseDeadIntersections(); for (it1 = intData.m_intList.begin(); it1 != intData.m_intList.end(); it1++) markDeadIntersections(intData.m_intList, it1); // checkInterList(intData.m_intList); return strokeSize; } //----------------------------------------------------------------------------- /* void endPointIntersect(const TStroke* s0, const TStroke* s1, vector& parIntersections) { TPointD p00 = s0->getPoint(0); TPointD p11 = s1->getPoint(1); if (tdistance2(p00, p11)< 2*0.06*0.06) parIntersections.push_back(DoublePair(0, 1)); if (s0==s1) return; TPointD p01 = s0->getPoint(1); TPointD p10 = s1->getPoint(0); if (tdistance2(p00, p10)< 2*0.06*0.06) parIntersections.push_back(DoublePair(0, 0)); if (tdistance2(p01, p10)< 2*0.06*0.06) parIntersections.push_back(DoublePair(1, 0)); if (tdistance2(p01, p11)< 2*0.06*0.06) parIntersections.push_back(DoublePair(1, 1)); } */ //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // Trova una possibile regione data una lista di punti di intersezione TRegion *findRegion(list &intList, list::iterator it1, list::iterator it2) { TRegion *r = new TRegion(); int currStyle = 0; list::iterator itStart = it2; list::iterator nextIt1; list::iterator nextIt2; // Cicla finche' t2 non punta ad uno stroke gia' visitato while (!it2->m_visited) { it2->m_visited = true; // Ciclo finche' lo stroke puntato da it2 non ha un successivo punto di // intersezione do { it2++; if (it2 == it1->m_strokeList.end()) // uso la lista come se fosse circolare it2 = it1->m_strokeList.begin(); } while (it2->m_nextIntersection == intList.end()); nextIt1 = it2->m_nextIntersection; nextIt2 = it2->m_nextStroke; // Viene controllato e sistemato lo stile degli stroke if (it2->m_edge.m_styleId != 0) { if (currStyle == 0) currStyle = it2->m_edge.m_styleId; else if (it2->m_edge.m_styleId != currStyle) { currStyle = it2->m_edge.m_styleId; for (UINT i = 0; i < r->getEdgeCount(); i++) r->getEdge(i)->m_styleId = currStyle; } } else it2->m_edge.m_styleId = currStyle; // Aggiunge lo stroke puntato da p2 alla regione r->addEdge(&it2->m_edge); if (nextIt2 == itStart) return r; it1 = nextIt1; it2 = nextIt2; } delete r; return 0; } //----------------------------------------------------------------------------- /* bool areEqualRegions(const TRegion& r1, const TRegion& r2) { if (r1.getBBox()!=r2.getBBox()) return false; if (r1.getEdgeCount()!=r2.getEdgeCount()) return false; for (UINT i=0; im_s==e2->m_s && tmin(e1->m_w0, e1->m_w1)==tmin(e2->m_w0, e2->m_w1) && tmax(e1->m_w0, e1->m_w1)==tmax(e2->m_w0, e2->m_w1)) { if (e1->m_styleId && !e2->m_styleId) e2->m_styleId=e1->m_styleId; else if (e2->m_styleId && !e1->m_styleId) e1->m_styleId=e2->m_styleId; break; } } if (j==r2.getEdgeCount()) //e1 non e' uguale a nessun edge di r2 return false; } return true; } */ //----------------------------------------------------------------------------- /* bool isMetaRegion(const TRegion& r1, const TRegion& r2) { if (areEqualRegions(r1, r2)) return true; for (UINT i=0; i& m_regions, const TRegion& r) { for (UINT i=0; i ®ions, const TRegion &r) { double area = 0.0; TPointD p, pOld /*, pAux*/; int pointAdded = 0; int size = r.getEdgeCount(); if (size == 0) return false; // if (size<2) // return !isMetaRegion(regions, r); int firstControlPoint; int lastControlPoint; TEdge *e = r.getEdge(size - 1); pOld = e->m_s->getPoint(e->m_w1); for (int i = 0; i < size; i++) { TEdge *e = r.getEdge(i); TStroke *s = e->m_s; firstControlPoint = s->getControlPointIndexAfterParameter(e->m_w0); lastControlPoint = s->getControlPointIndexAfterParameter(e->m_w1); p = s->getPoint(e->m_w0); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; if (firstControlPoint <= lastControlPoint) { if (firstControlPoint & 0x1) firstControlPoint++; if (lastControlPoint - firstControlPoint <= 2) /// per evitare di avere troppi pochi punti.... { p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; } else for (int j = firstControlPoint; j < lastControlPoint; j += 2) { p = s->getControlPoint(j); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; } } else { firstControlPoint--; // this case, getControlPointIndexBEFOREParameter lastControlPoint--; if (firstControlPoint & 0x1) firstControlPoint--; if (firstControlPoint - lastControlPoint <= 2) /// per evitare di avere troppi pochi punti.... { p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; } else for (int j = firstControlPoint; j > lastControlPoint; j -= 2) { p = s->getControlPoint(j); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; } } p = s->getPoint(e->m_w1); area += (p.y + pOld.y) * (pOld.x - p.x); pOld = p; pointAdded++; } assert(pointAdded >= 4); return area > 0.5; } //----------------------------------------------------------------------------- void transferColors(const list &oldList, const list &newList, bool isStrokeChanged, bool isFlipped, bool overwriteColor); //----------------------------------------------------------------------------- void printStrokes1(vector &v, int size) { UINT i = 0; ofstream of("C:\\temp\\strokes.txt"); for (i = 0; i < (UINT)size; i++) { TStroke *s = v[i]->m_s; of << "***stroke " << i << endl; for (UINT j = 0; j < (UINT)s->getChunkCount(); j++) { const TThickQuadratic *q = s->getChunk(j); of << " s0 " << q->getP0() << endl; of << " s1 " << q->getP1() << endl; of << " s2 " << q->getP2() << endl; of << "****** " << endl; } of << endl; } for (i = size; i < v.size(); i++) { TStroke *s = v[i]->m_s; of << "***Autostroke " << i << endl; of << "s0 " << s->getPoint(0.0) << endl; of << "s1 " << s->getPoint(1.0) << endl; of << endl; } } //----------------------------------------------------------------------------- #ifdef _DEBUG static void printTime(TStopWatch &sw, string name) { ostringstream ss; ss << name << " : "; sw.print(ss); ss << '\n' << '\0'; string s(ss.str()); // TSystem::outputDebug(s); } #endif //----------------------------------------------------------------------------- void printStrokes1(vector &v, int size); // Trova le regioni in una TVectorImage int TVectorImage::Imp::computeRegions() { #if defined(_DEBUG) && !defined(MACOSX) TStopWatch stopWatch; stopWatch.start(true); #endif if (!m_computeRegions) return 0; /*if (m_intersectionData.m_computedAlmostOnce) { UINT i,n=m_strokes.size(); vector vv(n); for( i=0; i(), false); return true; }*/ g_autocloseTolerance = m_autocloseTolerance; // Cancella le regioni gia' esistenti per ricalcolarle clearPointerContainer(m_regions); m_regions.clear(); // Controlla che ci siano degli stroke if (m_strokes.empty()) { #if defined(_DEBUG) && !defined(MACOSX) stopWatch.stop(); #endif return 0; } // Inizializza la lista di intersezioni intList m_intersectionData.m_computedAlmostOnce = true; list &intList = m_intersectionData.m_intList; cleanIntersectionMarks(intList); // calcolo struttura delle intersezioni int added = 0, notAdded = 0; int strokeSize; strokeSize = computeIntersections(); list::iterator it1; list::iterator it2; for (it1 = intList.begin(); it1 != intList.end(); it1++) for (it2 = (*it1).m_strokeList.begin(); it2 != (*it1).m_strokeList.end(); it2++) it2->m_edge.m_r = 0; for (it1 = intList.begin(); it1 != intList.end(); it1++) { // Controlla che il punto in questione non sia isolato if (it1->m_numInter == 0) continue; for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end(); it2++) { TRegion *region; // se lo stroke non unisce due punti di intersezione // non lo considero e vado avanti con un altro stroke if (it2->m_nextIntersection == intList.end()) continue; // Se lo stroke puntato da t2 non e' stato ancora visitato, trova una // regione if (!it2->m_visited && (region = findRegion(intList, it1, it2))) { // Se la regione e' valida la aggiunge al vettore delle regioni if (isValidArea(m_regions, *region)) { added++; addRegion(m_regions, region); // Lega ogni ramo della regione alla regione di appartenenza for (UINT i = 0; i < region->getEdgeCount(); i++) { TEdge *e = region->getEdge(i); e->m_r = region; if (e->m_index >= 0) m_strokes[e->m_index]->addEdge(e); } } else // Se la regione non e' valida viene scartata { notAdded++; delete region; } } } } if (!m_notIntersectingStrokes) { UINT i; for (i = 0; i < m_intersectionData.m_intersectedStrokeArray.size(); i++) { if (!m_strokes[m_intersectionData.m_intersectedStrokeArray[i].m_index] ->m_edgeList.empty()) transferColors( m_intersectionData.m_intersectedStrokeArray[i].m_edgeList, m_strokes[m_intersectionData.m_intersectedStrokeArray[i].m_index] ->m_edgeList, false, false, true); clearPointerContainer( m_intersectionData.m_intersectedStrokeArray[i].m_edgeList); m_intersectionData.m_intersectedStrokeArray[i].m_edgeList.clear(); } m_intersectionData.m_intersectedStrokeArray.clear(); } assert(m_intersectionData.m_intersectedStrokeArray.empty()); // tolgo i segmenti aggiunti con l'autoclose vector::iterator it = m_strokes.begin(); advance(it, strokeSize); m_strokes.erase(it, m_strokes.end()); m_areValidRegions = true; #if defined(_DEBUG) && !defined(MACOSX) #endif return 0; } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- /* class Branch { TEdge m_edge; bool m_out, m_visited; Branch *m_next; Branch *m_nextBranch; Intersection* m_intersection; public: Branch* next() { assert(m_intersection); return m_next?m_next:m_intersection->m_branchList; } } class Intersection { private: TPointD m_intersectionPoint; int m_intersectionCount; Branch *m_branchList; Intersection* m_next; list m_strokeList; public: AddIntersection(int index0, int index1, DoublePair intersectionValues); } */