/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include "common.h" static FLOAT dm1 = -1.; double sqrt(double); #ifndef CACHE_LINE_SIZE #define CACHE_LINE_SIZE 8 #endif #ifndef DIVIDE_RATE #define DIVIDE_RATE 2 #endif #define GEMM_PQ MAX(GEMM_P, GEMM_Q) #define REAL_GEMM_R (GEMM_R - GEMM_PQ) #ifndef GETRF_FACTOR #define GETRF_FACTOR 0.75 #endif #undef GETRF_FACTOR #define GETRF_FACTOR 1.00 static inline long FORMULA1(long M, long N, long IS, long BK, long T) { double m = (double)(M - IS - BK); double n = (double)(N - IS - BK); double b = (double)BK; double a = (double)T; return (long)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a); } #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T)))) static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ BLASLONG is, min_i; BLASLONG js, min_j; BLASLONG jjs, min_jj; BLASLONG m = args -> m; BLASLONG n = args -> n; BLASLONG k = args -> k; BLASLONG lda = args -> lda; BLASLONG off = args -> ldb; FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE; FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE; FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE; FLOAT *sbb = sb; volatile BLASLONG *flag = (volatile BLASLONG *)args -> d; blasint *ipiv = (blasint *)args -> c; if (range_n) { n = range_n[1] - range_n[0]; c += range_n[0] * lda * COMPSIZE; d += range_n[0] * lda * COMPSIZE; } if (args -> a == NULL) { TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb); sbb = (FLOAT *)((((long)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B); } else { sb = (FLOAT *)args -> a; } for (js = 0; js < n; js += REAL_GEMM_R) { min_j = n - js; if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R; for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){ min_jj = js + min_j - jjs; if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; if (GEMM_UNROLL_N <= 8) { LASWP_NCOPY(min_jj, off + 1, off + k, c + (- off + jjs * lda) * COMPSIZE, lda, ipiv, sbb + k * (jjs - js) * COMPSIZE); } else { LASWP_PLUS(min_jj, off + 1, off + k, ZERO, #ifdef COMPLEX ZERO, #endif c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1); GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE); } for (is = 0; is < k; is += GEMM_P) { min_i = k - is; if (min_i > GEMM_P) min_i = GEMM_P; TRSM_KERNEL_LT(min_i, min_jj, k, dm1, #ifdef COMPLEX ZERO, #endif sb + k * is * COMPSIZE, sbb + (jjs - js) * k * COMPSIZE, c + (is + jjs * lda) * COMPSIZE, lda, is); } } if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0; for (is = 0; is < m; is += GEMM_P){ min_i = m - is; if (min_i > GEMM_P) min_i = GEMM_P; GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa); GEMM_KERNEL_N(min_i, min_j, k, dm1, #ifdef COMPLEX ZERO, #endif sa, sbb, d + (is + js * lda) * COMPSIZE, lda); } } } /* Non blocking implementation */ typedef struct { volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE]; } job_t; #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #ifndef COMPLEX #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \ GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #else #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \ GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) #endif static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ job_t *job = (job_t *)args -> common; BLASLONG xxx, bufferside; FLOAT *buffer[DIVIDE_RATE]; BLASLONG jjs, min_jj, div_n; BLASLONG i, current; BLASLONG is, min_i; BLASLONG m, n_from, n_to; BLASLONG k = args -> k; BLASLONG lda = args -> lda; BLASLONG off = args -> ldb; FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE; FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE; FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE; FLOAT *sbb= sb; blasint *ipiv = (blasint *)args -> c; volatile BLASLONG *flag = (volatile BLASLONG *)args -> d; if (args -> a == NULL) { TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb); sbb = (FLOAT *)((((long)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B); } else { sb = (FLOAT *)args -> a; } m = range_m[1] - range_m[0]; n_from = range_n[mypos + 0]; n_to = range_n[mypos + 1]; a += range_m[0] * COMPSIZE; c += range_m[0] * COMPSIZE; div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; buffer[0] = sbb; for (i = 1; i < DIVIDE_RATE; i++) { buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE; } for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) { for (i = 0; i < args -> nthreads; i++) while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {}; for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(n_to, xxx + div_n) - jjs; if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; if (GEMM_UNROLL_N <= 8) { LASWP_NCOPY(min_jj, off + 1, off + k, b + (- off + jjs * lda) * COMPSIZE, lda, ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE); } else { LASWP_PLUS(min_jj, off + 1, off + k, ZERO, #ifdef COMPLEX ZERO, #endif b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1); GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE); } for (is = 0; is < k; is += GEMM_P) { min_i = k - is; if (min_i > GEMM_P) min_i = GEMM_P; TRSM_KERNEL_LT(min_i, min_jj, k, dm1, #ifdef COMPLEX ZERO, #endif sb + k * is * COMPSIZE, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE, b + (is + jjs * lda) * COMPSIZE, lda, is); } } for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; } flag[mypos * CACHE_LINE_SIZE] = 0; if (m == 0) { for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0; } } for(is = 0; is < m; is += min_i){ min_i = m - is; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1); } ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa); current = mypos; do { div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { if ((current != mypos) && (!is)) { while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {}; } KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, lda, is, xxx); if (is + min_i >= m) { job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0; } } current ++; if (current >= args -> nthreads) current = 0; } while (current != mypos); } for (i = 0; i < args -> nthreads; i++) { for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {}; } } return 0; } #if 1 blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) { BLASLONG m, n, mn, lda, offset; BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2]; blasint *ipiv, iinfo, info; int mode; blas_arg_t newarg; FLOAT *a, *sbb; FLOAT dummyalpha[2] = {ZERO, ZERO}; blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range_M[MAX_CPU_NUMBER + 1]; BLASLONG range_N[MAX_CPU_NUMBER + 1]; job_t job[MAX_CPU_NUMBER]; BLASLONG width, nn, mm; BLASLONG i, j, k, is, bk; BLASLONG num_cpu; volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128))); #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL; #else mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX; #else mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif m = args -> m; n = args -> n; a = (FLOAT *)args -> a; lda = args -> lda; ipiv = (blasint *)args -> c; offset = 0; if (range_n) { m -= range_n[0]; n = range_n[1] - range_n[0]; offset = range_n[0]; a += range_n[0] * (lda + 1) * COMPSIZE; } if (m <= 0 || n <= 0) return 0; newarg.c = ipiv; newarg.lda = lda; newarg.common = (void *)job; info = 0; mn = MIN(m, n); init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (init_bk > GEMM_Q) init_bk = GEMM_Q; if (init_bk <= GEMM_UNROLL_N) { info = GETF2(args, NULL, range_n, sa, sb, 0); return info; } next_bk = init_bk; bk = mn; if (bk > next_bk) bk = next_bk; range_n_new[0] = offset; range_n_new[1] = offset + bk; iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0); if (iinfo && !info) info = iinfo; TRSM_ILTCOPY(bk, bk, a, lda, 0, sb); sbb = (FLOAT *)((((long)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B); is = 0; num_cpu = 0; while (is < mn) { width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (width > mn - is - bk) width = mn - is - bk; if (width < bk) { next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1); if (next_bk > bk) next_bk = bk; width = next_bk; if (width > mn - is - bk) width = mn - is - bk; } if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]); mm = m - bk - is; nn = n - bk - is; newarg.a = sb; newarg.b = a + (is + is * lda) * COMPSIZE; newarg.d = (void *)flag; newarg.m = mm; newarg.n = nn; newarg.k = bk; newarg.ldb = is + offset; nn -= width; range_n_mine[0] = 0; range_n_mine[1] = width; range_N[0] = width; range_M[0] = 0; num_cpu = 0; while (nn > 0){ if (mm >= nn) { width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1); if (nn < width) width = nn; nn -= width; range_N[num_cpu + 1] = range_N[num_cpu] + width; width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1); if (mm < width) width = mm; if (nn <= 0) width = mm; mm -= width; range_M[num_cpu + 1] = range_M[num_cpu] + width; } else { width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1); if (mm < width) width = mm; mm -= width; range_M[num_cpu + 1] = range_M[num_cpu] + width; width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1); if (nn < width) width = nn; if (mm <= 0) width = nn; nn -= width; range_N[num_cpu + 1] = range_N[num_cpu] + width; } queue[num_cpu].mode = mode; queue[num_cpu].routine = inner_advanced_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = &range_M[num_cpu]; queue[num_cpu].range_n = &range_N[0]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; flag[num_cpu * CACHE_LINE_SIZE] = 1; num_cpu ++; } newarg.nthreads = num_cpu; if (num_cpu > 0) { for (j = 0; j < num_cpu; j++) { for (i = 0; i < num_cpu; i++) { for (k = 0; k < DIVIDE_RATE; k++) { job[j].working[i][CACHE_LINE_SIZE * k] = 0; } } } } is += bk; bk = mn - is; if (bk > next_bk) bk = next_bk; range_n_new[0] = offset + is; range_n_new[1] = offset + is + bk; if (num_cpu > 0) { queue[num_cpu - 1].next = NULL; exec_blas_async(0, &queue[0]); inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1); iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0); if (iinfo && !info) info = iinfo + is; for (i = 0; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {}; TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb); } else { inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1); iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0); if (iinfo && !info) info = iinfo + is; } } next_bk = init_bk; is = 0; while (is < mn) { bk = mn - is; if (bk > next_bk) bk = next_bk; width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (width > mn - is - bk) width = mn - is - bk; if (width < bk) { next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1); if (next_bk > bk) next_bk = bk; } blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha, a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1, (void *)LASWP_PLUS, args -> nthreads); is += bk; } return info; } #else blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) { BLASLONG m, n, mn, lda, offset; BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2]; blasint *ipiv, iinfo, info; int mode; blas_arg_t newarg; FLOAT *a, *sbb; FLOAT dummyalpha[2] = {ZERO, ZERO}; blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range[MAX_CPU_NUMBER + 1]; BLASLONG width, nn, num_cpu; volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128))); #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL; #else mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX; #else mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif m = args -> m; n = args -> n; a = (FLOAT *)args -> a; lda = args -> lda; ipiv = (blasint *)args -> c; offset = 0; if (range_n) { m -= range_n[0]; n = range_n[1] - range_n[0]; offset = range_n[0]; a += range_n[0] * (lda + 1) * COMPSIZE; } if (m <= 0 || n <= 0) return 0; newarg.c = ipiv; newarg.lda = lda; newarg.common = NULL; newarg.nthreads = args -> nthreads; mn = MIN(m, n); init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (init_bk > GEMM_Q) init_bk = GEMM_Q; if (init_bk <= GEMM_UNROLL_N) { info = GETF2(args, NULL, range_n, sa, sb, 0); return info; } width = FORMULA1(m, n, 0, init_bk, args -> nthreads); width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (width > n - init_bk) width = n - init_bk; if (width < init_bk) { long temp; temp = FORMULA2(m, n, 0, init_bk, args -> nthreads); temp = (temp + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N; if (temp < init_bk) init_bk = temp; } next_bk = init_bk; bk = init_bk; range_n_new[0] = offset; range_n_new[1] = offset + bk; info = CNAME(args, NULL, range_n_new, sa, sb, 0); TRSM_ILTCOPY(bk, bk, a, lda, 0, sb); is = 0; num_cpu = 0; sbb = (FLOAT *)((((long)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B); while (is < mn) { width = FORMULA1(m, n, is, bk, args -> nthreads); width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (width < bk) { next_bk = FORMULA2(m, n, is, bk, args -> nthreads); next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (next_bk > bk) next_bk = bk; #if 0 if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is); #else if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is); #endif width = next_bk; } if (width > mn - is - bk) { next_bk = mn - is - bk; width = next_bk; } nn = n - bk - is; if (width > nn) width = nn; if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]); range[0] = 0; range[1] = width; num_cpu = 1; nn -= width; newarg.a = sb; newarg.b = a + (is + is * lda) * COMPSIZE; newarg.d = (void *)flag; newarg.m = m - bk - is; newarg.n = n - bk - is; newarg.k = bk; newarg.ldb = is + offset; while (nn > 0){ width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu); nn -= width; if (nn < 0) width = width + nn; range[num_cpu + 1] = range[num_cpu] + width; queue[num_cpu].mode = mode; //queue[num_cpu].routine = inner_advanced_thread; queue[num_cpu].routine = (void *)inner_basic_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = NULL; queue[num_cpu].range_n = &range[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; flag[num_cpu * CACHE_LINE_SIZE] = 1; num_cpu ++; } queue[num_cpu - 1].next = NULL; is += bk; bk = n - is; if (bk > next_bk) bk = next_bk; range_n_new[0] = offset + is; range_n_new[1] = offset + is + bk; if (num_cpu > 1) { exec_blas_async(1, &queue[1]); #if 0 inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0); iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0); #else if (range[1] >= bk * 4) { BLASLONG myrange[2]; myrange[0] = 0; myrange[1] = bk; inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1); iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0); myrange[0] = bk; myrange[1] = range[1]; inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1); } else { inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1); iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0); } #endif for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {}; TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb); } else { inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1); iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0); } if (iinfo && !info) info = iinfo + is; } next_bk = init_bk; bk = init_bk; is = 0; while (is < mn) { bk = mn - is; if (bk > next_bk) bk = next_bk; width = FORMULA1(m, n, is, bk, args -> nthreads); width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (width < bk) { next_bk = FORMULA2(m, n, is, bk, args -> nthreads); next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (next_bk > bk) next_bk = bk; #if 0 if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is); #else if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is); #endif } if (width > mn - is - bk) { next_bk = mn - is - bk; width = next_bk; } blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha, a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1, (void *)LASWP_PLUS, args -> nthreads); is += bk; } return info; } #endif