tahoma2d/toonz/sources/tnztools/autofilltlv.cpp

1229 lines
41 KiB
C++
Raw Normal View History

2016-03-19 06:57:51 +13:00
/*---------------------------------------------------------------------------*/
/* Vesione dell'Autofill aggiornata al 22.11.94 (Fabrizio Grisoli) */
/*---------------------------------------------------------------------------*/
/* aggiornata il 20.8.98 per CM24 (W.T.) */
#include "autofill.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "toonz/toonzimageutils.h"
#include "Tw/Tw.h"
#include "toonz/fill.h"
#include "toonz/ttilesaver.h"
#include "toonz4.6/tmacro.h"
/*
#include "tropcm.h"
#include "timage_io.h"
#include "tlevel_io.h"
#include "toonz/txshsimplelevel.h"
#include "toonz/tscenehandle.h"
#include "tools/tool.h"*/
#define PRINTF
struct s_segm {
int xa, xb, region;
};
typedef struct big {
UINT lo, hi;
} BIG;
#define ADD_BIG(B, X) ((B).lo += (UINT)(X), \
(B).hi += (B).lo >> 30, (B).lo &= 0x3fffffff, (B))
#define ASS_BIG(B, X) ((B).lo = (UINT)(X), \
(B).hi = (B).lo >> 30, (B).lo &= 0x3fffffff, (B))
#define ADD_BIG_BIG(B1, B2) ((B1).lo += (B2).lo, (B1).hi += (B2).hi, \
(B1).hi += (B1).lo >> 30, (B1).lo &= 0x3fffffff, (B1))
#define BIG_TO_DOUBLE(B) ((double)(B).hi * (double)0x40000000 + (double)(B).lo)
#define BORDER_TOO 1
#define NO_BORDER 0
#define DIM_TRESH 0.00005
#define AMB_TRESH 130000
#define MIN_SIZE 20
struct vicine {
int region_id;
struct vicine *next;
};
struct s_fabri_region {
int active,
nextfree,
x, y, x1, y1, x2, y2, lx, ly,
xm, ym, npix, lxa, lxb,
tone, color_id,
per, holes, match;
BIG bx, by;
BIG bx2, by2;
struct vicine *vicini;
};
struct s_fabri_region_list {
struct s_fabri_region *array;
int size, n, lx, ly;
};
static struct s_fabri_region_list
F_reference = {0, 0, 0},
F_work = {0, 0, 0};
static int F_ref_bx = 0;
static int F_ref_by = 0;
static int F_wor_bx = 0;
static int F_wor_by = 0;
static int Dx_f = 0, DP_f = 0, Df_f = 0;
static int Dx_t = 0, DP_t = 0, Df_t = 0;
/*---------------------------------------------------------------------------*/
/*-- Local Prototipes -------------------------------------------------------*/
static int trova_migliore_padre(int prob_vector[], int *att_best);
static int match(int prob[], int padre, int *fro, int *to);
static void scan_fabri_regions(TRasterCM32P ras, struct s_fabri_region_list *rlst, int mode,
int x1, int y1, int x2, int y2);
static void rinomina(int r1, int r2, int r_num, struct s_fabri_region_list *rl);
static void aggiungi(int r1, int r2, struct s_fabri_region_list *rlst);
static void rimuovi_tutti(int r1, struct s_fabri_region_list *rlst);
static void fondi(struct s_fabri_region_list *rlst, int r1, int r2);
static void assign_prob3(int prob[], int i, int j);
static void find_best(int prob_vector[], int *col, int to);
static void free_list(struct vicine **vic);
static int somma_quadrati(int x, int y);
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
void rect_autofill_learn(const TToonzImageP &imgToLearn, int x1, int y1, int x2, int y2)
/*---------------------------------------------------------------------------*/
{
int i;
double pbx, pby;
double abx, aby;
int tot_pix = 0;
if ((x2 - x1) * (y2 - y1) < MIN_SIZE)
return;
pbx = pby = 0.0;
abx = aby = 0.0;
TRasterCM32P ras = imgToLearn->getRaster();
if (F_reference.array) {
for (i = 0; i < F_reference.n; i++)
free_list(&F_reference.array[i].vicini);
free(F_reference.array);
}
F_reference.array = 0;
F_reference.size = 0;
F_reference.n = 0;
F_reference.lx = 0;
F_reference.ly = 0;
scan_fabri_regions(ras, &F_reference, 1, x1, y1, x2, y2);
for (i = 0; i < F_reference.n; i++) {
F_reference.array[i].match = -1;
F_reference.array[i].color_id = ras->pixels(F_reference.array[i].y)[F_reference.array[i].x].getPaint();
pbx += BIG_TO_DOUBLE(F_reference.array[i].bx);
pby += BIG_TO_DOUBLE(F_reference.array[i].by);
abx = BIG_TO_DOUBLE(F_reference.array[i].bx);
aby = BIG_TO_DOUBLE(F_reference.array[i].by);
tot_pix += F_reference.array[i].npix;
}
if (tot_pix) {
F_ref_bx = pbx / tot_pix;
F_ref_by = pby / tot_pix;
} else {
F_ref_bx = 0;
F_ref_by = 0;
}
}
/*----------------------------------------------------------------------------*/
bool rect_autofill_apply(const TToonzImageP &imgToApply, int x1, int y1, int x2, int y2, bool selective, TTileSetCM32 *tileSet)
/*----------------------------------------------------------------------------*/
{
double pbx, pby;
double abx, aby;
int i, j;
int tot_pix = 0;
int *prob_vector;
int fro, to;
int col;
int valore;
int padre;
//int temp_prob, att_match;
TRasterCM32P ras = imgToApply->getRaster();
if ((x2 - x1) * (y2 - y1) < MIN_SIZE)
return false;
if (F_reference.n <= 0 || F_reference.array == 0)
return false;
pbx = pby = 0.0;
abx = aby = 0.0;
/* Resetta gli eventuali accoppiamenti fatti precedentemente */
for (i = 0; i < F_reference.n; i++)
F_reference.array[i].match = -1;
if (F_work.array) {
for (i = 0; i < F_work.n; i++)
free_list(&F_work.array[i].vicini);
free(F_work.array);
}
F_work.array = 0;
F_work.size = 0;
F_work.n = 0;
F_work.lx = 0;
F_work.ly = 0;
scan_fabri_regions(ras, &F_work, 1, x1, y1, x2, y2);
if (F_work.n <= 0 || F_work.array == 0)
return false;
if (abs(F_work.lx * F_work.ly - F_reference.lx * F_reference.ly) > 0.1 *
(F_work.lx * F_work.ly + F_reference.lx * F_reference.ly))
return false;
for (i = 0; i < F_work.n; i++) {
F_work.array[i].match = -1;
pbx += BIG_TO_DOUBLE(F_work.array[i].bx);
pby += BIG_TO_DOUBLE(F_work.array[i].by);
abx = BIG_TO_DOUBLE(F_work.array[i].bx);
aby = BIG_TO_DOUBLE(F_work.array[i].by);
tot_pix += F_work.array[i].npix;
}
F_wor_bx = pbx / tot_pix;
F_wor_by = pby / tot_pix;
prob_vector = (int *)calloc(3 * F_work.n * F_reference.n, sizeof(int));
for (i = 0; i < F_reference.n; i++)
for (j = 0; j < F_work.n; j++)
assign_prob3(prob_vector, i, j);
Dx_f = Dx_f / F_reference.n;
DP_f = DP_f / F_reference.n;
Df_f = Df_f / F_reference.n;
Dx_t = Dx_t / F_work.n;
DP_t = DP_t / F_work.n;
Df_t = Df_t / F_work.n;
#ifdef SELECTIVE
if (selective) {
//Accoppia non trasparenti
for (i = 0; i < F_work.n; i++)
if (F_work.array[i].color_id != 0) {
temp_prob = 0;
att_match = F_reference.n;
/* Se non verra' aggiornato in seguito non verra' *
* comunque piu' cambiato di colore */
for (j = 0; j < F_reference.n; j++)
if ((F_reference.array[i].match < 0) &&
((prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[2 * (F_work.n * F_reference.n) + i * F_reference.n + j] / 1500.0) >
temp_prob)) {
att_match = j;
temp_prob = (prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[2 * (F_work.n * F_reference.n) + i * F_reference.n + j] / 1500.0);
}
F_work.array[i].match = att_match;
if (att_match < F_reference.n)
F_reference.array[att_match].match = i;
}
/*--------------------------------------------------------------------------*/
}
#endif
bool recomputeBBox = false;
FillParameters params;
params.m_emptyOnly = selective;
for (i = 0; i < F_reference.n && i < F_work.n; i++) {
padre = trova_migliore_padre(prob_vector, &fro);
valore = match(prob_vector, padre, &fro, &to);
if (valore > AMB_TRESH) {
F_work.array[to].match = fro;
F_reference.array[fro].match = to;
F_work.array[to].color_id = F_reference.array[fro].color_id;
if ((F_work.array[to].color_id != 0) && (valore != 0)) {
params.m_p = TPoint(F_work.array[to].x, F_work.array[to].y);
params.m_styleId = F_work.array[to].color_id;
TTileSaverCM32 tileSaver(ras, tileSet);
recomputeBBox = fill(ras, params, &tileSaver) || recomputeBBox;
}
}
}
/*..........................................................................*/
/* Matching basato sulla probabilita' di colore */
/*..........................................................................*/
if (FALSE) {
bool recomputeBBox = false;
for (i = 0; i < F_work.n; i++) {
if (F_work.array[i].match < 0) {
find_best(prob_vector, &col, i);
F_work.array[i].match = 1;
F_work.array[i].color_id = col;
if (F_work.array[i].color_id != 0) {
params.m_p = TPoint(F_work.array[i].x, F_work.array[i].y);
params.m_styleId = F_work.array[i].color_id;
TTileSaverCM32 tileSaver(ras, tileSet);
recomputeBBox = fill(ras, params, &tileSaver) || recomputeBBox;
}
}
}
}
free(prob_vector);
return recomputeBBox;
}
/*---------------------------------------------------------------------------*/
/* Versione del Learning delle aree di Fabrizio */
/*...........................................................................*/
void autofill_learn(const TToonzImageP &imgToLearn)
/*---------------------------------------------------------------------------*/
{
int i;
double pbx, pby;
double abx, aby;
int tot_pix = 0;
pbx = pby = 0.0;
abx = aby = 0.0;
TRasterCM32P ras = imgToLearn->getRaster();
if (F_reference.array) {
for (i = 0; i < F_reference.n; i++)
free_list(&F_reference.array[i].vicini);
free(F_reference.array);
}
F_reference.array = 0;
F_reference.size = 0;
F_reference.n = 0;
F_reference.lx = 0;
F_reference.ly = 0;
scan_fabri_regions(ras, &F_reference, 0, 0, 0, 0, 0);
for (i = 0; i < F_reference.n; i++) {
F_reference.array[i].match = -1;
F_reference.array[i].color_id = ras->pixels(F_reference.array[i].y)[F_reference.array[i].y].getPaint();
pbx += BIG_TO_DOUBLE(F_reference.array[i].bx);
pby += BIG_TO_DOUBLE(F_reference.array[i].by);
abx = BIG_TO_DOUBLE(F_reference.array[i].bx);
aby = BIG_TO_DOUBLE(F_reference.array[i].by);
tot_pix += F_reference.array[i].npix;
}
F_ref_bx = pbx / tot_pix;
F_ref_by = pby / tot_pix;
}
/*-- end of learn_fabrizio --------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Versione del matching delle aree di Fabrizio */
/*...........................................................................*/
bool autofill_apply(const TToonzImageP &imgToApply, bool selective, TTileSetCM32 *tileSet)
/*---------------------------------------------------------------------------*/
{
double pbx, pby;
double abx, aby;
int i, j;
int tot_pix = 0;
int *prob_vector;
int fro, to;
int col;
int valore;
int padre;
// int temp_prob, att_match;
if (F_reference.n <= 0 || F_reference.array == 0)
return false;
pbx = pby = 0.0;
abx = aby = 0.0;
TRasterCM32P ras = imgToApply->getRaster();
/* Resetta gli eventuali accoppiamenti fatti precedentemente */
for (i = 0; i < F_reference.n; i++)
F_reference.array[i].match = -1;
if (F_work.array) {
for (i = 0; i < F_work.n; i++)
free_list(&F_work.array[i].vicini);
free(F_work.array);
}
F_work.array = 0;
F_work.size = 0;
F_work.n = 0;
F_work.lx = 0;
F_work.ly = 0;
scan_fabri_regions(ras, &F_work, 0, 0, 0, 0, 0);
if (abs(F_work.lx * F_work.ly - F_reference.lx * F_reference.ly) > 0.1 *
(F_work.lx * F_work.ly + F_reference.lx * F_reference.ly))
return false;
for (i = 0; i < F_work.n; i++) {
F_work.array[i].match = -1;
pbx += BIG_TO_DOUBLE(F_work.array[i].bx);
pby += BIG_TO_DOUBLE(F_work.array[i].by);
abx = BIG_TO_DOUBLE(F_work.array[i].bx);
aby = BIG_TO_DOUBLE(F_work.array[i].by);
tot_pix += F_work.array[i].npix;
}
F_wor_bx = pbx / tot_pix;
F_wor_by = pby / tot_pix;
prob_vector = (int *)calloc(3 * F_work.n * F_reference.n, sizeof(int));
for (i = 0; i < F_reference.n; i++)
for (j = 0; j < F_work.n; j++)
assign_prob3(prob_vector, i, j);
Dx_f = Dx_f / F_reference.n;
DP_f = DP_f / F_reference.n;
Df_f = Df_f / F_reference.n;
Dx_t = Dx_t / F_work.n;
DP_t = DP_t / F_work.n;
Df_t = Df_t / F_work.n;
#ifdef SELECTIVE
if (selective) {
// Accoppia non trasparenti
for (i = 0; i < F_work.n; i++)
if (F_work.array[i].color_id != 0) {
temp_prob = 0;
att_match = F_reference.n;
/* Se non verra' aggiornato in seguito non verra' *
* comunque piu' cambiato di colore */
for (j = 0; j < F_reference.n; j++)
if ((F_reference.array[i].match < 0) &&
((prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[2 * (F_work.n * F_reference.n) + i * F_reference.n + j] / 1500.0) >
temp_prob)) {
att_match = j;
temp_prob = (prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[i * F_reference.n + j] / 1000.0) *
(prob_vector[2 * (F_work.n * F_reference.n) + i * F_reference.n + j] / 1500.0);
}
F_work.array[i].match = att_match;
if (att_match < F_reference.n)
F_reference.array[att_match].match = i;
}
/*--------------------------------------------------------------------------*/
}
#endif
bool recomputeBBox = false;
FillParameters params;
params.m_emptyOnly = selective;
for (i = 0; i < F_reference.n && i < F_work.n; i++) {
padre = trova_migliore_padre(prob_vector, &fro);
valore = match(prob_vector, padre, &fro, &to);
if (valore > AMB_TRESH) {
F_work.array[to].match = fro;
F_reference.array[fro].match = to;
F_work.array[to].color_id = F_reference.array[fro].color_id;
if ((F_work.array[to].color_id != 0) && (valore != 0)) {
params.m_p = TPoint(F_work.array[to].x, F_work.array[to].y);
params.m_styleId = F_work.array[to].color_id;
TTileSaverCM32 tileSaver(ras, tileSet);
recomputeBBox = fill(ras, params, &tileSaver) || recomputeBBox;
}
}
/*..........................................................................*/
/* Matching basato sulla probabilita' di colore */
/*..........................................................................*/
if (FALSE) {
bool recomputeBBox = false;
for (i = 0; i < F_work.n; i++) {
if (F_work.array[i].match < 0) {
find_best(prob_vector, &col, i);
F_work.array[i].match = 1;
F_work.array[i].color_id = col;
if (F_work.array[i].color_id != 0) {
params.m_p = TPoint(F_work.array[i].x, F_work.array[i].y);
params.m_styleId = F_work.array[i].color_id;
TTileSaverCM32 tileSaver(ras, tileSet);
recomputeBBox = fill(ras, params, &tileSaver) || recomputeBBox;
}
}
}
}
}
free(prob_vector);
return recomputeBBox;
}
/*-- end of apply_fabrizio --------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Scansione delle aree di Fabrizio */
/*...........................................................................*/
static void scan_fabri_regions(TRasterCM32P ras, struct s_fabri_region_list *rlst,
int mode, int ex1, int ey1, int ex2, int ey2)
/*---------------------------------------------------------------------------*/
{
int firstfree;
TPixelCM32 *pix;
int xa, xb;
int xp, x, y, x1, y1, x2, y2, tmp;
int dx, dy, i, j, h, n, tone, maxtone;
int rold, rcur, nold, ncur;
int precedente;
struct s_segm *row[2];
int *ultima_zona;
int region_id, region_old, keep, discard, vicina;
bool border_tooX1, border_tooY1, border_tooX2, border_tooY2;
x1 = ex1;
x2 = ex2;
y1 = ey1;
y2 = ey2;
TRect rect = ras->getBounds();
border_tooX1 = x1 == rect.x0;
border_tooY1 = y1 == rect.y0;
border_tooX2 = x2 == rect.x1;
border_tooY2 = y2 == rect.y1;
dx = x2 - x1 + 1;
dy = y2 - y1 + 1;
rlst->lx = dx;
rlst->ly = dy;
row[0] = (struct s_segm *)calloc(dx, sizeof(struct s_segm));
row[1] = (struct s_segm *)calloc(dx, sizeof(struct s_segm));
ultima_zona = (int *)calloc(dx, sizeof(int));
rold = 1;
rcur = 0;
nold = ncur = 0;
vicina = -1;
for (tmp = 0; tmp < dx; tmp++)
ultima_zona[tmp] = -1;
/*.. Inizializza la struttura ...............................................*/
rlst->size = 100;
rlst->array = (struct s_fabri_region *)
calloc(rlst->size, sizeof(struct s_fabri_region));
rlst->n = 0;
firstfree = -1;
for (tmp = 0; tmp < rlst->size; tmp++) {
rlst->array[tmp].vicini = NULL;
rlst->array[tmp].holes = 0;
}
/*...........................................................................*/
for (y = y1; y <= y2; y++) {
vicina = -1;
pix = ras->pixels(y) + x1;
x = x1;
PRINTF("Cerca Area \n");
while (x <= x2) {
while (x <= x2 && pix->getTone() < pix->getMaxTone()) {
pix++;
x++;
} /*cerca una area */
if (x <= x2) { /* non ho raggiunto il bordo */
PRINTF("Prima del Bordo \n");
xa = x;
maxtone = pix->getTone();
xp = x;
while (x <= x2 && pix->getTone() >= pix->getMaxTone()) {
tone = pix->getTone();
if (tone > maxtone) {
maxtone = tone;
xp = x;
}
pix++;
x++;
}
xb = x - 1;
PRINTF("Trovata Area \n");
region_id = -1;
for (j = 0; j < nold && row[rold][j].xa <= xb; j++) {
if (row[rold][j].xb >= xa && row[rold][j].xa <= xb) {
region_old = row[rold][j].region;
if (region_id == region_old)
rlst->array[region_id].holes++;
if (region_id < 0) {
region_id = region_old;
rlst->array[region_id].per += 2 * (xb - xa + 1) + 2 -
2 * (MIN(row[rold][j].xb, xb) - MAX(row[rold][j].xa, xa) + 1);
} else if (region_id != region_old) {
/* CONTATTO FRA region_id E region_old */
PRINTF("Contatto tra %d e %d \n", region_id, region_old);
keep = region_old;
discard = region_id;
if (keep > discard) {
tmp = keep;
keep = discard;
discard = tmp;
}
/*.. UNISCO LE DUE REGIONI..................... */
if (rlst->array[discard].x1 < rlst->array[keep].x1)
rlst->array[keep].x1 = rlst->array[discard].x1;
if (rlst->array[discard].y1 < rlst->array[keep].y1)
rlst->array[keep].y1 = rlst->array[discard].y1;
if (rlst->array[discard].x2 > rlst->array[keep].x2)
rlst->array[keep].x2 = rlst->array[discard].x2;
if (rlst->array[discard].y2 > rlst->array[keep].y2)
rlst->array[keep].y2 = rlst->array[discard].y2;
rlst->array[keep].holes += rlst->array[discard].holes;
rlst->array[keep].npix += rlst->array[discard].npix;
rlst->array[keep].per += rlst->array[discard].per -
2 * (MIN(row[rold][j].xb, xb) - MAX(row[rold][j].xa, xa) + 1);
fondi(rlst, keep, discard);
ADD_BIG_BIG(rlst->array[keep].by, rlst->array[discard].by);
ADD_BIG_BIG(rlst->array[keep].bx, rlst->array[discard].bx);
ADD_BIG_BIG(rlst->array[keep].by2, rlst->array[discard].by2);
ADD_BIG_BIG(rlst->array[keep].bx2, rlst->array[discard].bx2);
if (rlst->array[keep].tone < rlst->array[discard].tone) {
rlst->array[keep].x = rlst->array[discard].x;
rlst->array[keep].y = rlst->array[discard].y;
rlst->array[keep].tone = rlst->array[discard].tone;
}
/* OGNI RIFERIMENTO A 'discard' DIVENTA UN RIF. A 'keep' */
for (h = 0; h < nold; h++)
if (row[rold][h].region == discard)
row[rold][h].region = keep;
for (h = 0; h < ncur; h++)
if (row[rcur][h].region == discard)
row[rcur][h].region = keep;
region_id = keep;
rinomina(discard, keep, rlst->n, rlst);
for (tmp = 0; tmp < dx; tmp++)
if (ultima_zona[tmp] == discard)
ultima_zona[tmp] = keep;
/* AGGIUNGO discard AL POOL DEI LIBERI */
rlst->array[discard].active = 0;
rlst->array[discard].nextfree = firstfree;
free_list(&rlst->array[discard].vicini);
rlst->array[discard].vicini = NULL;
firstfree = discard;
} /* end elseif */
} /* end of if */
} /* end of for */
PRINTF("Region ID %d %d %d %d \n", region_id, xa, xb, y);
PRINTF("Memorizza Area \n");
if (region_id >= 0) {
rlst->array[region_id].lxb = xb;
rlst->array[region_id].lxa = xa;
if (xa < rlst->array[region_id].x1)
rlst->array[region_id].x1 = xa;
if (xb > rlst->array[region_id].x2)
rlst->array[region_id].x2 = xb;
if (y < rlst->array[region_id].y1)
rlst->array[region_id].y1 = y;
if (y > rlst->array[region_id].y2)
rlst->array[region_id].y2 = y;
rlst->array[region_id].npix += xb - xa + 1;
ADD_BIG(rlst->array[region_id].by, (xb - xa + 1) * y);
ADD_BIG(rlst->array[region_id].bx, (xb - xa + 1) * (xb + xa) / 2);
ADD_BIG(rlst->array[region_id].by2, (xb - xa + 1) * y * y);
ADD_BIG(rlst->array[region_id].bx2, somma_quadrati(xa, xb));
if (rlst->array[region_id].tone < maxtone ||
(rlst->array[region_id].x2 - rlst->array[region_id].x1) < xb - xa) {
rlst->array[region_id].x = xp;
rlst->array[region_id].y = y;
rlst->array[region_id].tone = maxtone;
}
} else {
/* CREO UNA NUOVA REGIONE */
if (firstfree < 0) {
if (rlst->n >= rlst->size) {
rlst->size += 50;
rlst->array = (struct s_fabri_region *)
realloc(rlst->array, rlst->size * sizeof(struct s_fabri_region));
for (tmp = rlst->size - 1; tmp >= rlst->size - 50; tmp--)
rlst->array[tmp].vicini = NULL;
}
region_id = rlst->n++;
} else {
region_id = firstfree;
firstfree = rlst->array[region_id].nextfree;
}
rlst->array[region_id].active = 1;
rlst->array[region_id].vicini = NULL;
rlst->array[region_id].nextfree = 0;
rlst->array[region_id].x = xp;
rlst->array[region_id].y = y;
rlst->array[region_id].x1 = xa;
rlst->array[region_id].y1 = y;
rlst->array[region_id].x2 = xb;
rlst->array[region_id].y2 = y;
rlst->array[region_id].npix = xb - xa + 1;
rlst->array[region_id].holes = 0;
rlst->array[region_id].per = 2 * (xb - xa + 1) + 2;
rlst->array[region_id].lxb = xb;
rlst->array[region_id].lxa = xa;
ASS_BIG(rlst->array[region_id].by, (xb - xa + 1) * y);
ASS_BIG(rlst->array[region_id].bx, (xb - xa + 1) * (xb + xa) / 2);
ASS_BIG(rlst->array[region_id].by2, (xb - xa + 1) * y * y);
ASS_BIG(rlst->array[region_id].bx2, somma_quadrati(xa, xb));
rlst->array[region_id].tone = maxtone;
rlst->array[region_id].color_id = pix->getPaint();
}
/* MEMORIZZO LA REGIONE CORRENTE */
precedente = -1;
/*-----------------------------------------------------
.. Controlla se esiste vicinanza verticale ...........*/
for (tmp = xa; tmp <= xb; tmp++) {
if (ultima_zona[tmp - x1] != precedente) {
aggiungi(ultima_zona[tmp - x1], region_id, rlst);
precedente = ultima_zona[tmp - x1];
}
ultima_zona[tmp - x1] = region_id;
}
/*-----------------------------------------------------*/
aggiungi(vicina, region_id, rlst);
vicina = region_id;
if (ncur >= dx - 1) {
printf("autofill: row overflow dx=%d\n", dx);
exit(1);
}
row[rcur][ncur].xa = xa;
row[rcur][ncur].xb = xb;
row[rcur][ncur].region = region_id;
ncur++;
} /* end of if#1 */
} /* end of while#1 */
rcur = 1 - rcur;
rold = 1 - rold;
nold = ncur;
ncur = 0;
} /* end of for#1 */
n = 0;
/* mostra_vicini(rlst); */
for (i = 0; i < rlst->n; i++)
if ((rlst->array[i].active) &&
((rlst->array[i].x1 > x1 || border_tooX1) &&
(rlst->array[i].x2 < x2 || border_tooX2) &&
(rlst->array[i].y1 > y1 || border_tooY1) &&
(rlst->array[i].y2 < y2 || border_tooY2))) {
if (n < i) {
rlst->array[n] = rlst->array[i];
rlst->array[n].vicini = rlst->array[i].vicini;
rinomina(i, n, rlst->n, rlst);
for (tmp = 0; tmp < dx; tmp++)
if (ultima_zona[tmp] == i)
ultima_zona[tmp] = n;
}
rlst->array[n].lx = rlst->array[n].x2 - rlst->array[n].x1 + 1;
rlst->array[n].ly = rlst->array[n].y2 - rlst->array[n].y1 + 1;
rlst->array[n].xm = (rlst->array[n].x2 + rlst->array[n].x1) / 2;
rlst->array[n].ym = (rlst->array[n].y2 + rlst->array[n].y1) / 2;
n++;
} else
rimuovi_tutti(i, rlst);
/* mostra_vicini(rlst); */
rlst->n = n;
free(row[0]);
free(row[1]);
free(ultima_zona);
}
/*- end of scan_fabri_regions --------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Rinomina tutti i vicini regione1 in regione2 */
/*...........................................................................*/
static void rinomina(int regione1, int regione2, int num_regioni,
struct s_fabri_region_list *rlst)
/*---------------------------------------------------------------------------*/
{
struct vicine *appo, *old, appo1;
int i;
int trovato = FALSE;
PRINTF("Rinomino %d %d Regioni: %d \n", regione1, regione2, num_regioni);
/* mostra_vicini(rlst); */
for (i = 0; i < num_regioni; i++)
if (rlst->array[i].active) {
trovato = ((i == regione2) || (i == regione1));
PRINTF(">> %d \n", i);
old = NULL;
appo = rlst->array[i].vicini;
while (appo != NULL) {
if ((appo->region_id == regione2) || (appo->region_id == regione1)) {
if (trovato)
if (old != NULL) {
PRINTF("A%d %d \n", i, appo->region_id);
old->next = appo->next;
free(appo);
appo = old->next;
/* mostra_vicini(rlst); */
} else {
PRINTF("B%d %d \n", i, appo->region_id);
rlst->array[i].vicini = appo->next;
appo1 = *appo;
free(appo);
appo = appo1.next;
}
else /* non ho ancora trovato */
{
PRINTF("S%d \n", appo->region_id);
appo->region_id = regione2;
old = appo;
appo = appo->next;
trovato = TRUE;
}
} else /* region_id non e' region2 o regione 1 */
{
PRINTF("D%d \n", appo->region_id);
old = appo;
appo = appo->next;
}
}
}
PRINTF("Rinomino %d %d\n", regione1, regione2);
/* mostra_vicini(rlst); */
}
/*- end of rinomina ---------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Aggiunge a regione2 il vicino regione1 e viceversa */
/*...........................................................................*/
static void aggiungi(int regione1, int regione2,
struct s_fabri_region_list *rlst)
/*---------------------------------------------------------------------------*/
{
struct vicine *appo1, *appo2;
/* if((regione1==0)||(regione2==0)) */
PRINTF("Aggiungo %d a %d\n", regione1, regione2);
if ((regione1 != -1) && (regione2 != -1) && (regione2 != regione1)) {
if (rlst->array[regione1].active) {
appo1 = rlst->array[regione1].vicini;
while ((appo1 != NULL) && (appo1->region_id != regione2))
appo1 = appo1->next;
if (appo1 == NULL) {
appo1 = (struct vicine *)calloc(1, sizeof(struct vicine));
appo1->next = rlst->array[regione1].vicini;
appo1->region_id = regione2;
rlst->array[regione1].vicini = appo1;
}
}
if (rlst->array[regione2].active) {
appo2 = rlst->array[regione2].vicini;
while ((appo2 != NULL) && (appo2->region_id != regione1))
appo2 = appo2->next;
if (appo2 == NULL) {
appo2 = (struct vicine *)calloc(1, sizeof(struct vicine));
appo2->next = rlst->array[regione2].vicini;
appo2->region_id = regione1;
rlst->array[regione2].vicini = appo2;
}
}
}
PRINTF("Aggiunto %d a %d\n", regione1, regione2);
}
/*- end of aggiungi ---------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Aggiunge i vicini di r2 a quelli di r1 */
/*...........................................................................*/
static void fondi(struct s_fabri_region_list *rlst, int r1, int r2)
/*---------------------------------------------------------------------------*/
{
struct vicine *appo1, *appo2, *appo3;
PRINTF("Fondi %d %d \n", r1, r2);
/* mostra_vicini(rlst); */
appo2 = rlst->array[r2].vicini;
while (appo2 != NULL) {
appo1 = rlst->array[r1].vicini;
while ((appo1 != NULL) && (appo1->region_id != appo2->region_id) &&
(appo2->region_id != r1))
appo1 = appo1->next;
if (appo1 == NULL) {
appo3 = (struct vicine *)calloc(1, sizeof(struct vicine));
appo3->next = rlst->array[r1].vicini;
appo3->region_id = appo2->region_id;
rlst->array[r1].vicini = appo3;
appo2 = appo2->next;
} else {
appo2 = appo2->next;
}
}
PRINTF("Fuso %d %d \n", r1, r2);
/* mostra_vicini(rlst); */
}
/*- end of fondi ------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Mostra i vicini di ogni regione */
/*...........................................................................*/
static void mostra_vicini(struct s_fabri_region_list *rlst)
/*---------------------------------------------------------------------------*/
{
int i;
struct vicine *appo;
for (i = 0; i < rlst->n; i++)
if (rlst->array[i].active) {
PRINTF("Region: %d ::", i);
appo = rlst->array[i].vicini;
while (appo != NULL) {
PRINTF("%d ", appo->region_id);
appo = appo->next;
}
PRINTF("\n");
} else
PRINTF("Region: %d inactive \n", i);
}
/*- end of mostra_vicini ----------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Rimuove r1 come vicino in ogni regione */
/*...........................................................................*/
static void rimuovi_tutti(int r1, struct s_fabri_region_list *rlst)
/*---------------------------------------------------------------------------*/
{
struct vicine *appo, *old;
int i;
PRINTF("Elimino %d \n", r1);
/* mostra_vicini(rlst); */
for (i = 0; i < rlst->n; i++)
if (rlst->array[i].active) {
PRINTF(">> %d \n", i);
old = NULL;
appo = rlst->array[i].vicini;
while (appo != NULL) {
if (appo->region_id == r1) {
PRINTF("A%d %d\n", appo->region_id, old->region_id);
if (old != NULL) {
old->next = appo->next;
/* free(appo); */
appo = old->next;
/* mostra_vicini(rlst); */
} else {
rlst->array[i].vicini = appo->next;
/* free(appo); */
appo = rlst->array[i].vicini;
}
} else /* region_id non e' region2 o regione 1 */
{
PRINTF("D%d \n", appo->region_id);
old = appo;
appo = appo->next;
}
}
}
/* mostra_vicini(rlst); */
}
/*- end of rimuovi_tutti ----------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Assegna la probabilita' di transizione i->j (3) */
/*...........................................................................*/
static void assign_prob3(int prob[], int i, int j)
/*---------------------------------------------------------------------------*/
{
double delta_posx1, delta_posy1, delta_posx2, delta_posy2;
double delta_momx1, delta_momy1, delta_momx2, delta_momy2;
int delta_pix, delta_pix_max;
double delta_pos, delta_pos_max, delta_forma_mom;
int delta_forma1, delta_forma2, delta_forma;
delta_posx1 =
BIG_TO_DOUBLE(F_reference.array[i].bx) / F_reference.array[i].npix -
F_ref_bx;
delta_posy1 =
BIG_TO_DOUBLE(F_reference.array[i].by) / F_reference.array[i].npix -
F_ref_by;
delta_posx2 =
BIG_TO_DOUBLE(F_work.array[j].bx) / F_work.array[j].npix -
F_wor_bx;
delta_posy2 =
BIG_TO_DOUBLE(F_work.array[j].by) / F_work.array[j].npix -
F_wor_by;
/* Cosi' calcolo il modulo della differenza */
delta_pos =
sqrt((delta_posx2 - delta_posx1) * (delta_posx2 - delta_posx1) +
(delta_posy2 - delta_posy1) * (delta_posy2 - delta_posy1));
delta_pos_max =
sqrt((double)(F_work.lx * F_work.lx + F_work.ly * F_work.ly));
prob[i + j * F_reference.n] =
ROUNDP(1000 * (1 -
(delta_pos / delta_pos_max)));
delta_pix = abs(F_reference.array[i].npix - F_work.array[j].npix);
delta_pix_max = MAX((F_work.lx * F_work.ly), (F_reference.lx * F_reference.ly));
prob[(F_work.n * F_reference.n) + i + (j * F_reference.n)] =
ROUNDP(1000 * (1 - ((double)delta_pix /
(F_reference.array[i].npix + F_work.array[j].npix))));
delta_momx1 =
BIG_TO_DOUBLE(F_reference.array[i].bx2) / F_reference.array[i].npix -
(BIG_TO_DOUBLE(F_reference.array[i].bx) / F_reference.array[i].npix *
BIG_TO_DOUBLE(F_reference.array[i].bx) / F_reference.array[i].npix);
delta_momy1 =
BIG_TO_DOUBLE(F_reference.array[i].by2) / F_reference.array[i].npix -
(BIG_TO_DOUBLE(F_reference.array[i].by) / F_reference.array[i].npix *
BIG_TO_DOUBLE(F_reference.array[i].by) / F_reference.array[i].npix);
delta_momx2 =
BIG_TO_DOUBLE(F_work.array[j].bx2) / F_work.array[j].npix -
(BIG_TO_DOUBLE(F_work.array[j].bx) / F_work.array[j].npix *
BIG_TO_DOUBLE(F_work.array[j].bx) / F_work.array[j].npix);
delta_momy2 =
BIG_TO_DOUBLE(F_work.array[j].by2) / F_work.array[j].npix -
(BIG_TO_DOUBLE(F_work.array[j].by) / F_work.array[j].npix *
BIG_TO_DOUBLE(F_work.array[j].by) / F_work.array[j].npix);
delta_forma_mom =
abs(sqrt(delta_momx1 + delta_momy1) -
sqrt(delta_momx2 + delta_momy2));
delta_forma1 = ROUNDP(1000 * (((double)F_reference.array[i].per / F_reference.array[i].npix -
2 / sqrt((double)F_reference.array[i].npix / 3.14)) /
(2 - 2 / sqrt((double)F_reference.array[i].npix / 3.14))));
delta_forma2 = ROUNDP(1000 * (((double)F_work.array[j].per / F_work.array[j].npix -
2 / sqrt((double)F_work.array[j].npix / 3.14)) /
(2 - 2 / sqrt((double)F_work.array[j].npix / 3.14))));
delta_forma =
ROUNDP(1000 * (1 -
(delta_forma_mom / delta_pos_max)));
prob[(2 * F_work.n * F_reference.n) + i + (j * F_reference.n)] = delta_forma;
Dx_f += ROUNDP(sqrt(delta_posx1 * delta_posx1 + delta_posy1 * delta_posy1));
DP_f += F_reference.array[i].npix;
Df_f += ROUNDP(sqrt(delta_momx1 * delta_momx1 + delta_momy1 * delta_momy1));
Dx_t += ROUNDP(sqrt(delta_posx2 * delta_posx2 + delta_posy2 * delta_posy2));
DP_t += F_work.array[j].npix;
Df_t += ROUNDP(sqrt(delta_momx2 * delta_momx2 + delta_momy2 * delta_momy2));
}
/*- end of assign_prob ------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Trova il colore migliore per una regione */
/*...........................................................................*/
static void find_best(int prob[], int *col, int to)
/*---------------------------------------------------------------------------*/
{
float att_max = 0.0;
int i, j, numero;
float color_value;
for (i = 0; i < F_reference.n; i++) {
color_value = 0.0;
numero = 0;
for (j = 0; j < F_reference.n; j++) {
if (F_reference.array[i].color_id == F_reference.array[j].color_id) {
color_value += (prob[to * F_reference.n + j] / 1000.0) *
(prob[to * F_reference.n + j] / 1000.0) *
/* (prob[(F_work.n*F_reference.n)+to*F_reference.n+j]/1500.0)*
*/ (prob[2 * (F_work.n * F_reference.n) + to * F_reference.n + j] / 1500.0);
numero++;
}
}
if ((color_value / numero) > att_max) {
att_max = color_value / numero;
PRINTF("Nuovo Massimo %f \n", att_max);
*col = F_reference.array[i].color_id;
}
}
}
/*- end of find_best --------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* libera la memoria occupata da una lista */
/*...........................................................................*/
static void free_list(struct vicine **vic)
/*---------------------------------------------------------------------------*/
{
if (*vic != NULL) {
free_list(&(*vic)->next);
free(*vic);
*vic = NULL;
}
}
/*- end of free_list --------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Somma il quadrato dei numeri da x a y o viceversa */
/*...........................................................................*/
static int somma_quadrati(int x, int y)
/*---------------------------------------------------------------------------*/
{
int somma = 0;
int i;
for (i = MIN(x, y); i <= MAX(x, y); i++)
somma += i * i;
return somma;
}
/*- end of somma_quadrati ---------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Scegli il punto da cui proseguire l'accoppiamento */
/*...........................................................................*/
static int trova_migliore_padre(int prob_vector[], int *att_my)
/*---------------------------------------------------------------------------*/
{
int att_best, att_second, att_max_diff = 0;
int att_choice = -1, i, j, k;
struct vicine *a1, *a2;
PRINTF("Inizio Ricerca del Padre \n");
for (k = 0; k < F_reference.n; k++)
if (F_reference.array[k].match >= 0) {
PRINTF("%d Gia' Accoppiato\n", k);
a1 = F_reference.array[k].vicini;
while (a1 != NULL) {
i = a1->region_id;
if (F_reference.array[i].match < 0) {
PRINTF("%d vicino di %d Non Accoppiato\n", i, k);
a2 = F_work.array[F_reference.array[k].match].vicini;
att_best = 0;
att_second = 0;
while (a2 != NULL) {
PRINTF("Coppia %d %d \n", i, j);
j = a2->region_id;
if (F_work.array[j].match < 0) {
if (prob_vector[j * F_reference.n + i] *
prob_vector[(F_work.n * F_reference.n) + j * F_reference.n + i] *
prob_vector[2 * (F_work.n * F_reference.n) + j * F_reference.n + i] >
att_second)
att_second = prob_vector[j * F_reference.n + i] *
prob_vector[(F_work.n * F_reference.n) + j * F_reference.n + i] *
prob_vector[2 * (F_work.n * F_reference.n) + j * F_reference.n + i];
if (prob_vector[j * F_reference.n + i] *
prob_vector[(F_work.n * F_reference.n) + j * F_reference.n + i] *
prob_vector[2 * (F_work.n * F_reference.n) + j * F_reference.n + i] >
att_best) {
att_second = att_best;
att_best = prob_vector[j * F_reference.n + i] *
prob_vector[(F_work.n * F_reference.n) + j * F_reference.n + i] *
prob_vector[2 * (F_work.n * F_reference.n) + j * F_reference.n + i];
}
}
a2 = a2->next;
}
if ((att_best - att_second) > att_max_diff) {
att_max_diff = att_best - att_second;
att_choice = F_reference.array[k].match;
*att_my = i;
PRINTF("Nuovo Coeff.: %d \n", att_max_diff);
}
}
a1 = a1->next;
}
}
PRINTF("Finita Ricerca del Padre \n");
return att_choice;
}
/*---------------------------------------------------------------------------*/
static int match(int prob[], int padre, int *fro, int *to)
/*---------------------------------------------------------------------------*/
{
int att_max = 0, i, j;
struct vicine *a2;
if (padre > -1) {
a2 = F_work.array[padre].vicini;
while (a2 != NULL) {
j = a2->region_id;
if ((F_work.array[j].match < 0) &&
(prob[j * F_reference.n + (*fro)] *
prob[(F_work.n * F_reference.n) + j * F_reference.n + (*fro)] *
prob[2 * (F_work.n * F_reference.n) + j * F_reference.n + (*fro)] >
att_max)) {
att_max = prob[j * F_reference.n + (*fro)] *
prob[(F_work.n * F_reference.n) + j * F_reference.n + (*fro)] *
prob[2 * (F_work.n * F_reference.n) + j * F_reference.n + (*fro)];
*to = j;
}
a2 = a2->next;
}
} else {
for (i = 0; i < F_reference.n; i++)
for (j = 0; j < F_work.n; j++)
if (
(F_work.array[j].match < 0) &&
(F_reference.array[i].match < 0) &&
(F_work.array[j].npix > DIM_TRESH * F_work.lx * F_work.ly) &&
(F_reference.array[i].npix > DIM_TRESH * F_reference.lx * F_reference.ly)) {
if (
prob[j * F_reference.n + i] *
prob[(F_work.n * F_reference.n) + j * F_reference.n + i] *
prob[2 * (F_work.n * F_reference.n) + j * F_reference.n + i] >
att_max) {
att_max = prob[j * F_reference.n + i] *
prob[(F_work.n * F_reference.n) + j * F_reference.n + i] *
prob[2 * (F_work.n * F_reference.n) + j * F_reference.n + i];
*fro = i;
*to = j;
}
}
}
return att_max;
}