tahoma2d/thirdparty/superlu/SuperLU_4.1/FORTRAN/c_fortran_dgssv.c

175 lines
5.1 KiB
C
Raw Normal View History

2016-03-24 05:25:36 +13:00
/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
#include "slu_ddefs.h"
#define HANDLE_SIZE 8
/* kind of integer to hold a pointer. Use int.
This might need to be changed on 64-bit systems. */
typedef long long fptr; /* 64-bit by default */
typedef struct {
SuperMatrix *L;
SuperMatrix *U;
int *perm_c;
int *perm_r;
} factors_t;
void
c_fortran_dgssv_(int *iopt, int *n, int *nnz, int *nrhs,
double *values, int *rowind, int *colptr,
double *b, int *ldb,
fptr *f_factors, /* a handle containing the address
pointing to the factored matrices */
int *info)
{
/*
* This routine can be called from Fortran.
*
* iopt (input) int
* Specifies the operation:
* = 1, performs LU decomposition for the first time
* = 2, performs triangular solve
* = 3, free all the storage in the end
*
* f_factors (input/output) fptr*
* If iopt == 1, it is an output and contains the pointer pointing to
* the structure of the factored matrices.
* Otherwise, it it an input.
*
*/
SuperMatrix A, AC, B;
SuperMatrix *L, *U;
int *perm_r; /* row permutations from partial pivoting */
int *perm_c; /* column permutation vector */
int *etree; /* column elimination tree */
SCformat *Lstore;
NCformat *Ustore;
int i, panel_size, permc_spec, relax;
trans_t trans;
mem_usage_t mem_usage;
superlu_options_t options;
SuperLUStat_t stat;
factors_t *LUfactors;
trans = NOTRANS;
if ( *iopt == 1 ) { /* LU decomposition */
/* Set the default input options. */
set_default_options(&options);
/* Initialize the statistics variables. */
StatInit(&stat);
/* Adjust to 0-based indexing */
for (i = 0; i < *nnz; ++i) --rowind[i];
for (i = 0; i <= *n; ++i) --colptr[i];
dCreate_CompCol_Matrix(&A, *n, *n, *nnz, values, rowind, colptr,
SLU_NC, SLU_D, SLU_GE);
L = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
U = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
if ( !(perm_r = intMalloc(*n)) ) ABORT("Malloc fails for perm_r[].");
if ( !(perm_c = intMalloc(*n)) ) ABORT("Malloc fails for perm_c[].");
if ( !(etree = intMalloc(*n)) ) ABORT("Malloc fails for etree[].");
/*
* Get column permutation vector perm_c[], according to permc_spec:
* permc_spec = 0: natural ordering
* permc_spec = 1: minimum degree on structure of A'*A
* permc_spec = 2: minimum degree on structure of A'+A
* permc_spec = 3: approximate minimum degree for unsymmetric matrices
*/
permc_spec = options.ColPerm;
get_perm_c(permc_spec, &A, perm_c);
sp_preorder(&options, &A, perm_c, etree, &AC);
panel_size = sp_ienv(1);
relax = sp_ienv(2);
dgstrf(&options, &AC, relax, panel_size, etree,
NULL, 0, perm_c, perm_r, L, U, &stat, info);
if ( *info == 0 ) {
Lstore = (SCformat *) L->Store;
Ustore = (NCformat *) U->Store;
printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz);
dQuerySpace(L, U, &mem_usage);
printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
} else {
printf("dgstrf() error returns INFO= %d\n", *info);
if ( *info <= *n ) { /* factorization completes */
dQuerySpace(L, U, &mem_usage);
printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
}
}
/* Restore to 1-based indexing */
for (i = 0; i < *nnz; ++i) ++rowind[i];
for (i = 0; i <= *n; ++i) ++colptr[i];
/* Save the LU factors in the factors handle */
LUfactors = (factors_t*) SUPERLU_MALLOC(sizeof(factors_t));
LUfactors->L = L;
LUfactors->U = U;
LUfactors->perm_c = perm_c;
LUfactors->perm_r = perm_r;
*f_factors = (fptr) LUfactors;
/* Free un-wanted storage */
SUPERLU_FREE(etree);
Destroy_SuperMatrix_Store(&A);
Destroy_CompCol_Permuted(&AC);
StatFree(&stat);
} else if ( *iopt == 2 ) { /* Triangular solve */
/* Initialize the statistics variables. */
StatInit(&stat);
/* Extract the LU factors in the factors handle */
LUfactors = (factors_t*) *f_factors;
L = LUfactors->L;
U = LUfactors->U;
perm_c = LUfactors->perm_c;
perm_r = LUfactors->perm_r;
dCreate_Dense_Matrix(&B, *n, *nrhs, b, *ldb, SLU_DN, SLU_D, SLU_GE);
/* Solve the system A*X=B, overwriting B with X. */
dgstrs (trans, L, U, perm_c, perm_r, &B, &stat, info);
Destroy_SuperMatrix_Store(&B);
StatFree(&stat);
} else if ( *iopt == 3 ) { /* Free storage */
/* Free the LU factors in the factors handle */
LUfactors = (factors_t*) *f_factors;
SUPERLU_FREE (LUfactors->perm_r);
SUPERLU_FREE (LUfactors->perm_c);
Destroy_SuperNode_Matrix(LUfactors->L);
Destroy_CompCol_Matrix(LUfactors->U);
SUPERLU_FREE (LUfactors->L);
SUPERLU_FREE (LUfactors->U);
SUPERLU_FREE (LUfactors);
} else {
fprintf(stderr,"Invalid iopt=%d passed to c_fortran_dgssv()\n",*iopt);
exit(-1);
}
}