require 'pl' local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)() package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path require 'xlua' require 'w2nn' local iproc = require 'iproc' local reconstruct = require 'reconstruct' local image_loader = require 'image_loader' local gm = require 'graphicsmagick' local cmd = torch.CmdLine() cmd:text() cmd:text("waifu2x-benchmark") cmd:text("Options:") cmd:option("-dir", "./data/test", 'test image directory') cmd:option("-model1_dir", "./models/anime_style_art_rgb", 'model1 directory') cmd:option("-model2_dir", "", 'model2 directory (optional)') cmd:option("-method", "scale", '(scale|noise)') cmd:option("-filter", "Catrom", "downscaling filter (Box|Lanczos|Catrom(Bicubic))") cmd:option("-color", "y", '(rgb|y)') cmd:option("-noise_level", 1, 'model noise level') cmd:option("-jpeg_quality", 75, 'jpeg quality') cmd:option("-jpeg_times", 1, 'jpeg compression times') cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times') cmd:option("-range_bug", 0, 'Reproducing the dynamic range bug that is caused by MATLAB\'s rgb2ycbcr(1|0)') local opt = cmd:parse(arg) torch.setdefaulttensortype('torch.FloatTensor') if cudnn then cudnn.fastest = true cudnn.benchmark = false end local function rgb2y_matlab(x) local y = torch.Tensor(1, x:size(2), x:size(3)):zero() x = iproc.byte2float(x) y:add(x[1] * 65.481) y:add(x[2] * 128.553) y:add(x[3] * 24.966) y:add(16.0) return y:byte():float() end local function RGBMSE(x1, x2) x1 = iproc.float2byte(x1):float() x2 = iproc.float2byte(x2):float() return (x1 - x2):pow(2):mean() end local function YMSE(x1, x2) if opt.range_bug == 1 then local x1_2 = rgb2y_matlab(x1) local x2_2 = rgb2y_matlab(x2) return (x1_2 - x2_2):pow(2):mean() else local x1_2 = image.rgb2y(x1):mul(255.0) local x2_2 = image.rgb2y(x2):mul(255.0) return (x1_2 - x2_2):pow(2):mean() end end local function MSE(x1, x2, color) if color == "y" then return YMSE(x1, x2) else return RGBMSE(x1, x2) end end local function PSNR(x1, x2, color) local mse = MSE(x1, x2, color) return 10 * math.log10((255.0 * 255.0) / mse) end local function transform_jpeg(x, opt) for i = 1, opt.jpeg_times do jpeg = gm.Image(x, "RGB", "DHW") jpeg:format("jpeg") jpeg:samplingFactors({1.0, 1.0, 1.0}) blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down) jpeg:fromBlob(blob, len) x = jpeg:toTensor("byte", "RGB", "DHW") end return iproc.byte2float(x) end local function baseline_scale(x, filter) return iproc.scale(x, x:size(3) * 2.0, x:size(2) * 2.0, filter) end local function transform_scale(x, opt) return iproc.scale(x, x:size(3) * 0.5, x:size(2) * 0.5, opt.filter) end local function benchmark(opt, x, input_func, model1, model2) local model1_mse = 0 local model2_mse = 0 local baseline_mse = 0 local model1_psnr = 0 local model2_psnr = 0 local baseline_psnr = 0 for i = 1, #x do local ground_truth = x[i] local input, model1_output, model2_output, baseline_output input = input_func(ground_truth, opt) t = sys.clock() if input:size(3) == ground_truth:size(3) then model1_output = reconstruct.image(model1, input) if model2 then model2_output = reconstruct.image(model2, input) end else model1_output = reconstruct.scale(model1, 2.0, input) if model2 then model2_output = reconstruct.scale(model2, 2.0, input) end baseline_output = baseline_scale(input, opt.filter) end model1_mse = model1_mse + MSE(ground_truth, model1_output, opt.color) model1_psnr = model1_psnr + PSNR(ground_truth, model1_output, opt.color) if model2 then model2_mse = model2_mse + MSE(ground_truth, model2_output, opt.color) model2_psnr = model2_psnr + PSNR(ground_truth, model2_output, opt.color) end if baseline_output then baseline_mse = baseline_mse + MSE(ground_truth, baseline_output, opt.color) baseline_psnr = baseline_psnr + PSNR(ground_truth, baseline_output, opt.color) end if model2 then if baseline_output then io.stdout:write( string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, model2_rmse=%f, baseline_psnr=%f, model1_psnr=%f, model2_psnr=%f \r", i, #x, math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i), math.sqrt(model2_mse / i), baseline_psnr / i, model1_psnr / i, model2_psnr / i )) else io.stdout:write( string.format("%d/%d; model1_rmse=%f, model2_rmse=%f, model1_psnr=%f, model2_psnr=%f \r", i, #x, math.sqrt(model1_mse / i), math.sqrt(model2_mse / i), model1_psnr / i, model2_psnr / i )) end else if baseline_output then io.stdout:write( string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, baseline_psnr=%f, model1_psnr=%f \r", i, #x, math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i), baseline_psnr / i, model1_psnr / i )) else io.stdout:write( string.format("%d/%d; model1_rmse=%f, model1_psnr=%f \r", i, #x, math.sqrt(model1_mse / i), model1_psnr / i )) end end io.stdout:flush() end io.stdout:write("\n") end local function load_data(test_dir) local test_x = {} local files = dir.getfiles(test_dir, "*.*") for i = 1, #files do table.insert(test_x, iproc.crop_mod4(image_loader.load_float(files[i]))) xlua.progress(i, #files) end return test_x end function load_model(filename) return torch.load(filename, "ascii") end print(opt) if opt.method == "scale" then local f1 = path.join(opt.model1_dir, "scale2.0x_model.t7") local f2 = path.join(opt.model2_dir, "scale2.0x_model.t7") local s1, model1 = pcall(load_model, f1) local s2, model2 = pcall(load_model, f2) if not s1 then error("Load error: " .. f1) end if not s2 then model2 = nil end local test_x = load_data(opt.dir) benchmark(opt, test_x, transform_scale, model1, model2) elseif opt.method == "noise" then local f1 = path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level)) local f2 = path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level)) local s1, model1 = pcall(load_model, f1) local s2, model2 = pcall(load_model, f2) if not s1 then error("Load error: " .. f1) end if not s2 then model2 = nil end local test_x = load_data(opt.dir) benchmark(opt, test_x, transform_jpeg, model1, model2) end