require 'pl' require 'cunn' local iproc = require 'iproc' local gm = {} gm.Image = require 'graphicsmagick.Image' local data_augmentation = {} local function pcacov(x) local mean = torch.mean(x, 1) local xm = x - torch.ger(torch.ones(x:size(1)), mean:squeeze()) local c = torch.mm(xm:t(), xm) c:div(x:size(1) - 1) local ce, cv = torch.symeig(c, 'V') return ce, cv end function random_rect_size(rect_min, rect_max) local r = torch.Tensor(2):uniform():cmul(torch.Tensor({rect_max - rect_min, rect_max - rect_min})):int() local rect_h = r[1] + rect_min local rect_w = r[2] + rect_min return rect_h, rect_w end function random_rect(height, width, rect_h, rect_w) local r = torch.Tensor(2):uniform():cmul(torch.Tensor({height - 1 - rect_h, width-1 - rect_w})):int() local rect_y1 = r[1] + 1 local rect_x1 = r[2] + 1 local rect_x2 = rect_x1 + rect_w local rect_y2 = rect_y1 + rect_h return {x1 = rect_x1, y1 = rect_y1, x2 = rect_x2, y2 = rect_y2} end function data_augmentation.erase(src, p, n, rect_min, rect_max) if torch.uniform() < p then local src, conversion = iproc.byte2float(src) src = src:contiguous():clone() local ch = src:size(1) local height = src:size(2) local width = src:size(3) for i = 1, n do local rect_h, rect_w = random_rect_size(rect_min, rect_max) local rect1 = random_rect(height, width, rect_h, rect_w) local rect2 = random_rect(height, width, rect_h, rect_w) dest_rect = src:sub(1, ch, rect1.y1, rect1.y2, rect1.x1, rect1.x2) src_rect = src:sub(1, ch, rect2.y1, rect2.y2, rect2.x1, rect2.x2) dest_rect:copy(src_rect:clone()) end if conversion then src = iproc.float2byte(src) end return src else return src end end function data_augmentation.color_noise(src, p, factor) factor = factor or 0.1 if torch.uniform() < p then local src, conversion = iproc.byte2float(src) local src_t = src:reshape(src:size(1), src:nElement() / src:size(1)):t():contiguous() local ce, cv = pcacov(src_t) local color_scale = torch.Tensor(3):uniform(1 / (1 + factor), 1 + factor) pca_space = torch.mm(src_t, cv):t():contiguous() for i = 1, 3 do pca_space[i]:mul(color_scale[i]) end local dest = torch.mm(pca_space:t(), cv:t()):t():contiguous():resizeAs(src) dest:clamp(0.0, 1.0) if conversion then dest = iproc.float2byte(dest) end return dest else return src end end function data_augmentation.overlay(src, p) if torch.uniform() < p then local r = torch.uniform() local src, conversion = iproc.byte2float(src) src = src:contiguous() local flip = data_augmentation.flip(src) flip:mul(r):add(src * (1.0 - r)) if conversion then flip = iproc.float2byte(flip) end return flip else return src end end function data_augmentation.unsharp_mask(src, p) if torch.uniform() < p then local radius = 0 -- auto local sigma = torch.uniform(0.5, 1.5) local amount = torch.uniform(0.1, 0.9) local threshold = torch.uniform(0.0, 0.05) local unsharp = gm.Image(src, "RGB", "DHW"): unsharpMask(radius, sigma, amount, threshold): toTensor("float", "RGB", "DHW") if src:type() == "torch.ByteTensor" then return iproc.float2byte(unsharp) else return unsharp end else return src end end function data_augmentation.blur(src, p, size, sigma_min, sigma_max) size = size or "3" filters = utils.split(size, ",") for i = 1, #filters do local s = tonumber(filters[i]) filters[i] = s end if torch.uniform() < p then local src, conversion = iproc.byte2float(src) local kernel_size = filters[torch.random(1, #filters)] local sigma if sigma_min == sigma_max then sigma = sigma_min else sigma = torch.uniform(sigma_min, sigma_max) end local kernel = iproc.gaussian2d(kernel_size, sigma) local dest = image.convolve(src, kernel, 'same') if conversion then dest = iproc.float2byte(dest) end return dest else return src end end function data_augmentation.pairwise_scale(x, y, p, scale_min, scale_max) if torch.uniform() < p then assert(x:size(2) == y:size(2) and x:size(3) == y:size(3)) local scale = torch.uniform(scale_min, scale_max) local h = math.floor(x:size(2) * scale) local w = math.floor(x:size(3) * scale) local filters = {"Lanczos", "Catrom"} local x_filter = filters[torch.random(1, 2)] x = iproc.scale(x, w, h, x_filter) y = iproc.scale(y, w, h, "Triangle") return x, y else return x, y end end function data_augmentation.pairwise_rotate(x, y, p, r_min, r_max) if torch.uniform() < p then assert(x:size(2) == y:size(2) and x:size(3) == y:size(3)) local r = torch.uniform(r_min, r_max) / 360.0 * math.pi x = iproc.rotate(x, r) y = iproc.rotate(y, r) return x, y else return x, y end end function data_augmentation.pairwise_negate(x, y, p) if torch.uniform() < p then assert(x:size(2) == y:size(2) and x:size(3) == y:size(3)) x = iproc.negate(x) y = iproc.negate(y) return x, y else return x, y end end function data_augmentation.pairwise_negate_x(x, y, p) if torch.uniform() < p then assert(x:size(2) == y:size(2) and x:size(3) == y:size(3)) x = iproc.negate(x) return x, y else return x, y end end function data_augmentation.pairwise_flip(x, y) local flip = torch.random(1, 4) local tr = torch.random(1, 2) local x, conversion = iproc.byte2float(x) y = iproc.byte2float(y) x = x:contiguous() y = y:contiguous() if tr == 1 then -- pass elseif tr == 2 then x = x:transpose(2, 3):contiguous() y = y:transpose(2, 3):contiguous() end if flip == 1 then x = iproc.hflip(x) y = iproc.hflip(y) elseif flip == 2 then x = iproc.vflip(x) y = iproc.vflip(y) elseif flip == 3 then x = iproc.hflip(iproc.vflip(x)) y = iproc.hflip(iproc.vflip(y)) elseif flip == 4 then end if conversion then x = iproc.float2byte(x) y = iproc.float2byte(y) end return x, y end function data_augmentation.shift_1px(src) -- reducing the even/odd issue in nearest neighbor scaler. local direction = torch.random(1, 4) local x_shift = 0 local y_shift = 0 if direction == 1 then x_shift = 1 y_shift = 0 elseif direction == 2 then x_shift = 0 y_shift = 1 elseif direction == 3 then x_shift = 1 y_shift = 1 elseif flip == 4 then x_shift = 0 y_shift = 0 end local w = src:size(3) - x_shift local h = src:size(2) - y_shift w = w - (w % 4) h = h - (h % 4) local dest = iproc.crop(src, x_shift, y_shift, x_shift + w, y_shift + h) return dest end function data_augmentation.flip(src) local flip = torch.random(1, 4) local tr = torch.random(1, 2) local src, conversion = iproc.byte2float(src) local dest src = src:contiguous() if tr == 1 then -- pass elseif tr == 2 then src = src:transpose(2, 3):contiguous() end if flip == 1 then dest = iproc.hflip(src) elseif flip == 2 then dest = iproc.vflip(src) elseif flip == 3 then dest = iproc.hflip(iproc.vflip(src)) elseif flip == 4 then dest = src end if conversion then dest = iproc.float2byte(dest) end return dest end local function test_blur() torch.setdefaulttensortype("torch.FloatTensor") local image =require 'image' local src = image.lena() image.display({image = src, min=0, max=1}) local dest = data_augmentation.blur(src, 1.0, "3,5", 0.5, 0.6) image.display({image = dest, min=0, max=1}) dest = data_augmentation.blur(src, 1.0, "3", 1.0, 1.0) image.display({image = dest, min=0, max=1}) dest = data_augmentation.blur(src, 1.0, "5", 0.75, 0.75) image.display({image = dest, min=0, max=1}) end --test_blur() return data_augmentation