require 'image' local iproc = require 'iproc' local data_augmentation = require 'data_augmentation' local pairwise_transform_utils = {} function pairwise_transform_utils.random_half(src, p, filters) if torch.uniform() < p then local filter = filters[torch.random(1, #filters)] return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter) else return src end end function pairwise_transform_utils.crop_if_large(src, max_size, mod) local tries = 4 if src:size(2) > max_size and src:size(3) > max_size then assert(max_size % 4 == 0) local rect for i = 1, tries do local yi = torch.random(0, src:size(2) - max_size) local xi = torch.random(0, src:size(3) - max_size) if mod then yi = yi - (yi % mod) xi = xi - (xi % mod) end rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size) -- ignore simple background if rect:float():std() >= 0 then break end end return rect else return src end end function pairwise_transform_utils.preprocess(src, crop_size, options) local dest = src local box_only = false if options.data.filters then if #options.data.filters == 1 and options.data.filters[1] == "Box" then box_only = true end end if box_only then local mod = 2 -- assert pos % 2 == 0 dest = pairwise_transform_utils.crop_if_large(dest, math.max(crop_size * 2, options.max_size), mod) dest = data_augmentation.flip(dest) dest = data_augmentation.color_noise(dest, options.random_color_noise_rate) dest = data_augmentation.overlay(dest, options.random_overlay_rate) dest = data_augmentation.unsharp_mask(dest, options.random_unsharp_mask_rate) else dest = pairwise_transform_utils.random_half(dest, options.random_half_rate, options.downsampling_filters) dest = pairwise_transform_utils.crop_if_large(dest, math.max(crop_size * 2, options.max_size)) dest = data_augmentation.flip(dest) dest = data_augmentation.color_noise(dest, options.random_color_noise_rate) dest = data_augmentation.overlay(dest, options.random_overlay_rate) dest = data_augmentation.unsharp_mask(dest, options.random_unsharp_mask_rate) dest = data_augmentation.shift_1px(dest) end return dest end function pairwise_transform_utils.active_cropping(x, y, lowres_y, size, scale, p, tries) assert("x:size == y:size", x:size(2) * scale == y:size(2) and x:size(3) * scale == y:size(3)) assert("crop_size % scale == 0", size % scale == 0) local r = torch.uniform() local t = "float" if x:type() == "torch.ByteTensor" then t = "byte" end if p < r then local xi = torch.random(1, x:size(3) - (size + 1)) * scale local yi = torch.random(1, x:size(2) - (size + 1)) * scale local yc = iproc.crop(y, xi, yi, xi + size, yi + size) local xc = iproc.crop(x, xi / scale, yi / scale, xi / scale + size / scale, yi / scale + size / scale) return xc, yc else local best_se = 0.0 local best_xi, best_yi local m = torch.FloatTensor(y:size(1), size, size) for i = 1, tries do local xi = torch.random(1, x:size(3) - (size + 1)) * scale local yi = torch.random(1, x:size(2) - (size + 1)) * scale local xc = iproc.crop(y, xi, yi, xi + size, yi + size) local lc = iproc.crop(lowres_y, xi, yi, xi + size, yi + size) local xcf = iproc.byte2float(xc) local lcf = iproc.byte2float(lc) local se = m:copy(xcf):add(-1.0, lcf):pow(2):sum() if se >= best_se then best_xi = xi best_yi = yi best_se = se end end local yc = iproc.crop(y, best_xi, best_yi, best_xi + size, best_yi + size) local xc = iproc.crop(x, best_xi / scale, best_yi / scale, best_xi / scale + size / scale, best_yi / scale + size / scale) return xc, yc end end return pairwise_transform_utils