require 'pl' local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)() package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path require 'xlua' require 'w2nn' local iproc = require 'iproc' local reconstruct = require 'reconstruct' local image_loader = require 'image_loader' local gm = require 'graphicsmagick' local cjson = require 'cjson' local cmd = torch.CmdLine() cmd:text() cmd:text("waifu2x-benchmark") cmd:text("Options:") cmd:option("-dir", "./data/test", 'test image directory') cmd:option("-file", "", 'test image file list') cmd:option("-model1_dir", "./models/anime_style_art_rgb", 'model1 directory') cmd:option("-model2_dir", "", 'model2 directory (optional)') cmd:option("-method", "scale", '(scale|noise|noise_scale|user|diff|scale4)') cmd:option("-filter", "Catrom", "downscaling filter (Box|Lanczos|Catrom(Bicubic))") cmd:option("-resize_blur", 1.0, 'blur parameter for resize') cmd:option("-color", "y", '(rgb|y|r|g|b)') cmd:option("-noise_level", 1, 'model noise level') cmd:option("-jpeg_quality", 75, 'jpeg quality') cmd:option("-jpeg_times", 1, 'jpeg compression times') cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times') cmd:option("-range_bug", 0, 'Reproducing the dynamic range bug that is caused by MATLAB\'s rgb2ycbcr(1|0)') cmd:option("-save_image", 0, 'save converted images') cmd:option("-save_baseline_image", 0, 'save baseline images') cmd:option("-output_dir", "./", 'output directroy') cmd:option("-show_progress", 1, 'show progressbar') cmd:option("-baseline_filter", "Catrom", 'baseline interpolation (Box|Lanczos|Catrom(Bicubic))') cmd:option("-save_info", 0, 'save score and parameters to benchmark.txt') cmd:option("-save_all", 0, 'group -save_info, -save_image and -save_baseline_image option') cmd:option("-thread", -1, 'number of CPU threads') cmd:option("-tta", 0, 'use tta') cmd:option("-tta_level", 8, 'tta level') cmd:option("-crop_size", 256, 'patch size per process') cmd:option("-batch_size", 1, 'batch_size') cmd:option("-force_cudnn", 0, 'use cuDNN backend') cmd:option("-yuv420", 0, 'use yuv420 jpeg') cmd:option("-name", "", 'model name for user method') cmd:option("-x_dir", "", 'input image for user method') cmd:option("-y_dir", "", 'groundtruth image for user method. filename must be the same as x_dir') cmd:option("-x_file", "", 'input image for user method') cmd:option("-y_file", "", 'groundtruth image for user method. filename must be the same as x_file') cmd:option("-border", 0, 'border px that will removed') cmd:option("-metric", "", '(jaccard)') local function to_bool(settings, name) if settings[name] == 1 then settings[name] = true else settings[name] = false end end local opt = cmd:parse(arg) torch.setdefaulttensortype('torch.FloatTensor') if cudnn then cudnn.fastest = true cudnn.benchmark = true end to_bool(opt, "force_cudnn") to_bool(opt, "yuv420") to_bool(opt, "save_all") to_bool(opt, "tta") if opt.save_all then opt.save_image = true opt.save_info = true opt.save_baseline_image = true else to_bool(opt, "save_image") to_bool(opt, "save_info") to_bool(opt, "save_baseline_image") end to_bool(opt, "show_progress") if opt.thread > 0 then torch.setnumthreads(tonumber(opt.thread)) end if opt.output_dir:len() > 0 then dir.makepath(opt.output_dir) end -- patch for lua52 if not math.log10 then math.log10 = function(x) return math.log(x, 10) end end local function rgb2y_matlab(x) local y = torch.Tensor(1, x:size(2), x:size(3)):zero() x = iproc.byte2float(x) y:add(x[1] * 65.481) y:add(x[2] * 128.553) y:add(x[3] * 24.966) y:add(16.0) return y:byte():float() end local function RGBMSE(x1, x2) x1 = iproc.float2byte(x1):float() x2 = iproc.float2byte(x2):float() return (x1 - x2):pow(2):mean() end local function CHMSE(x1, x2, ch) x1 = iproc.float2byte(x1):float() x2 = iproc.float2byte(x2):float() return (x1[ch] - x2[ch]):pow(2):mean() end local function YMSE(x1, x2) if opt.range_bug == 1 then local x1_2 = rgb2y_matlab(x1) local x2_2 = rgb2y_matlab(x2) return (x1_2 - x2_2):pow(2):mean() else local x1_2 = image.rgb2y(x1):mul(255.0) local x2_2 = image.rgb2y(x2):mul(255.0) return (x1_2 - x2_2):pow(2):mean() end end local function MSE(x1, x2, color) if color == "y" then return YMSE(x1, x2) elseif color == "r" then return CHMSE(x1, x2, 1) elseif color == "g" then return CHMSE(x1, x2, 2) elseif color == "b" then return CHMSE(x1, x2, 3) else return RGBMSE(x1, x2) end end local function PSNR(x1, x2, color) local mse = math.max(MSE(x1, x2, color), 1) return 10 * math.log10((255.0 * 255.0) / mse) end local function MSE2PSNR(mse) return 10 * math.log10((255.0 * 255.0) / math.max(mse, 1)) end local function transform_jpeg(x, opt) for i = 1, opt.jpeg_times do jpeg = gm.Image(x, "RGB", "DHW") jpeg:format("jpeg") if opt.yuv420 then jpeg:samplingFactors({2.0, 1.0, 1.0}) else jpeg:samplingFactors({1.0, 1.0, 1.0}) end blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down) jpeg:fromBlob(blob, len) x = jpeg:toTensor("byte", "RGB", "DHW") end return iproc.byte2float(x) end local function baseline_scale(x, filter) return iproc.scale(x, x:size(3) * 2.0, x:size(2) * 2.0, filter) end local function baseline_scale4(x, filter) return iproc.scale(x, x:size(3) * 4.0, x:size(2) * 4.0, filter) end local function transform_scale(x, opt) return iproc.scale(x, x:size(3) * 0.5, x:size(2) * 0.5, opt.filter, opt.resize_blur) end local function transform_scale4(x, opt) return iproc.scale(x, x:size(3) * 0.25, x:size(2) * 0.25, opt.filter, opt.resize_blur) end local function transform_scale_jpeg(x, opt) x = iproc.scale(x, x:size(3) * 0.5, x:size(2) * 0.5, opt.filter, opt.resize_blur) for i = 1, opt.jpeg_times do jpeg = gm.Image(x, "RGB", "DHW") jpeg:format("jpeg") if opt.yuv420 then jpeg:samplingFactors({2.0, 1.0, 1.0}) else jpeg:samplingFactors({1.0, 1.0, 1.0}) end blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down) jpeg:fromBlob(blob, len) x = jpeg:toTensor("byte", "RGB", "DHW") end return iproc.byte2float(x) end local function remove_border(x, border) return iproc.crop(x, border, border, x:size(3) - border, x:size(2) - border) end local function create_metric(metric) if metric and metric:len() > 0 then if metric == "jaccard" then return { name = "jaccard", func = function (a, b) local ga = iproc.rgb2y(a) local gb = iproc.rgb2y(b) local ba = torch.Tensor():resizeAs(ga) local bb = torch.Tensor():resizeAs(gb) ba:zero() bb:zero() ba[torch.gt(ga, 0.5)] = 1.0 bb[torch.gt(gb, 0.5)] = 1.0 local num_a = ba:sum() local num_b = bb:sum() local a_and_b = ba:cmul(bb):sum() local abab = (num_a + num_b - a_and_b) if abab > 0 then return (a_and_b / abab) else return 1 end end} else error("unknown metric: " .. metric) end else return nil end end local function benchmark(opt, x, model1, model2) local mse1, mse2, am1, am2 local won = {0, 0} local model1_mse = 0 local model2_mse = 0 local baseline_mse = 0 local model1_psnr = 0 local model2_psnr = 0 local baseline_psnr = 0 local model1_time = 0 local model2_time = 0 local scale_f = reconstruct.scale local image_f = reconstruct.image local detail_fp = nil local am = nil local model1_am = 0 local model2_am = 0 if opt.method == "user" or opt.method == "diff" then am = create_metric(opt.metric) end if opt.save_info then detail_fp = io.open(path.join(opt.output_dir, "benchmark_details.txt"), "w") end if opt.tta then scale_f = function(model, scale, x, block_size, batch_size) return reconstruct.scale_tta(model, opt.tta_level, scale, x, block_size, batch_size) end image_f = function(model, x, block_size, batch_size) return reconstruct.image_tta(model, opt.tta_level, x, block_size, batch_size) end end for i = 1, #x do if i % 10 == 0 then collectgarbage() end local basename = x[i].basename local input, model1_output, model2_output, baseline_output, ground_truth if opt.method == "scale" then input = transform_scale(iproc.byte2float(x[i].y), opt) ground_truth = iproc.byte2float(x[i].y) if opt.force_cudnn and i == 1 then -- run cuDNN benchmark first model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size) if model2 then model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size) end end t = sys.clock() model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size) model1_time = model1_time + (sys.clock() - t) if model2 then t = sys.clock() model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size) model2_time = model2_time + (sys.clock() - t) end baseline_output = baseline_scale(input, opt.baseline_filter) elseif opt.method == "scale4" then input = transform_scale4(iproc.byte2float(x[i].y), opt) ground_truth = iproc.byte2float(x[i].y) if opt.force_cudnn and i == 1 then -- run cuDNN benchmark first model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size) if model2 then model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size) end end t = sys.clock() model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size) model1_output = scale_f(model1, 2.0, model1_output, opt.crop_size, opt.batch_size) model1_time = model1_time + (sys.clock() - t) if model2 then t = sys.clock() model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size) model2_output = scale_f(model2, 2.0, model2_output, opt.crop_size, opt.batch_size) model2_time = model2_time + (sys.clock() - t) end baseline_output = baseline_scale4(input, opt.baseline_filter) elseif opt.method == "noise" then input = transform_jpeg(iproc.byte2float(x[i].y), opt) ground_truth = iproc.byte2float(x[i].y) if opt.force_cudnn and i == 1 then model1_output = image_f(model1, input, opt.crop_size, opt.batch_size) if model2 then model2_output = image_f(model2, input, opt.crop_size, opt.batch_size) end end t = sys.clock() model1_output = image_f(model1, input, opt.crop_size, opt.batch_size) model1_time = model1_time + (sys.clock() - t) if model2 then t = sys.clock() model2_output = image_f(model2, input, opt.crop_size, opt.batch_size) model2_time = model2_time + (sys.clock() - t) end baseline_output = input elseif opt.method == "noise_scale" then input = transform_scale_jpeg(iproc.byte2float(x[i].y), opt) ground_truth = iproc.byte2float(x[i].y) if opt.force_cudnn and i == 1 then if model1.noise_scale_model then model1_output = scale_f(model1.noise_scale_model, 2.0, input, opt.crop_size, opt.batch_size) else if model1.noise_model then model1_output = image_f(model1.noise_model, input, opt.crop_size, opt.batch_size) else model1_output = input end model1_output = scale_f(model1.scale_model, 2.0, model1_output, opt.crop_size, opt.batch_size) end if model2 then if model2.noise_scale_model then model2_output = scale_f(model2.noise_scale_model, 2.0, input, opt.crop_size, opt.batch_size) else if model2.noise_model then model2_output = image_f(model2.noise_model, input, opt.crop_size, opt.batch_size) else model2_output = input end model2_output = scale_f(model2.scale_model, 2.0, model2_output, opt.crop_size, opt.batch_size) end end end t = sys.clock() if model1.noise_scale_model then model1_output = scale_f(model1.noise_scale_model, 2.0, input, opt.crop_size, opt.batch_size) else if model1.noise_model then model1_output = image_f(model1.noise_model, input, opt.crop_size, opt.batch_size) else model1_output = input end model1_output = scale_f(model1.scale_model, 2.0, model1_output, opt.crop_size, opt.batch_size) end model1_time = model1_time + (sys.clock() - t) if model2 then t = sys.clock() if model2.noise_scale_model then model2_output = scale_f(model2.noise_scale_model, 2.0, input, opt.crop_size, opt.batch_size) else if model2.noise_model then model2_output = image_f(model2.noise_model, input, opt.crop_size, opt.batch_size) else model2_output = input end model2_output = scale_f(model2.scale_model, 2.0, model2_output, opt.crop_size, opt.batch_size) end model2_time = model2_time + (sys.clock() - t) end baseline_output = baseline_scale(input, opt.baseline_filter) elseif opt.method == "user" then input = iproc.byte2float(x[i].x) ground_truth = iproc.byte2float(x[i].y) local y_scale = ground_truth:size(2) / input:size(2) if y_scale > 1 then if opt.force_cudnn and i == 1 then model1_output = scale_f(model1, y_scale, input, opt.crop_size, opt.batch_size) if model2 then model2_output = scale_f(model2, y_scale, input, opt.crop_size, opt.batch_size) end end t = sys.clock() model1_output = scale_f(model1, y_scale, input, opt.crop_size, opt.batch_size) model1_time = model1_time + (sys.clock() - t) if model2 then t = sys.clock() model2_output = scale_f(model2, y_scale, input, opt.crop_size, opt.batch_size) model2_time = model2_time + (sys.clock() - t) end else if opt.force_cudnn and i == 1 then model1_output = image_f(model1, input, opt.crop_size, opt.batch_size) if model2 then model2_output = image_f(model2, input, opt.crop_size, opt.batch_size) end end t = sys.clock() model1_output = image_f(model1, input, opt.crop_size, opt.batch_size) model1_time = model1_time + (sys.clock() - t) if model2 then t = sys.clock() model2_output = image_f(model2, input, opt.crop_size, opt.batch_size) model2_time = model2_time + (sys.clock() - t) end end elseif opt.method == "diff" then input = iproc.byte2float(x[i].x) ground_truth = iproc.byte2float(x[i].y) model1_output = input end if opt.border > 0 then ground_truth = remove_border(ground_truth, opt.border) model1_output = remove_border(model1_output, opt.border) end if am then am1 = am.func(ground_truth, model1_output) model1_am = model1_am + am1 else mse1 = MSE(ground_truth, model1_output, opt.color) model1_mse = model1_mse + mse1 model1_psnr = model1_psnr + MSE2PSNR(mse1) end local won_model = 1 if model2 then if opt.border > 0 then model2_output = remove_border(model2_output, opt.border) end if am then am2 = am.func(ground_truth, model2_output) model2_am = model2_am + am2 else mse2 = MSE(ground_truth, model2_output, opt.color) model2_mse = model2_mse + mse2 model2_psnr = model2_psnr + MSE2PSNR(mse2) end if am then if am1 < am2 then won[1] = won[1] + 1 elseif am1 > am2 then won[2] = won[2] + 1 won_model = 2 end else if mse1 < mse2 then won[1] = won[1] + 1 elseif mse1 > mse2 then won[2] = won[2] + 1 won_model = 2 end end if detail_fp then if am then detail_fp:write(string.format("%s,%f,%d\n", x[i].basename, am1, am2, won_model)) else detail_fp:write(string.format("%s,%f,%f,%d\n", x[i].basename, MSE2PSNR(mse1), MSE2PSNR(mse2), won_model)) end end else if detail_fp then if am then detail_fp:write(string.format("%s,%f\n", x[i].basename, am1)) else detail_fp:write(string.format("%s,%f\n", x[i].basename, MSE2PSNR(mse1))) end end end if baseline_output then baseline_output = remove_border(baseline_output, opt.border) mse = MSE(ground_truth, baseline_output, opt.color) baseline_mse = baseline_mse + mse baseline_psnr = baseline_psnr + MSE2PSNR(mse) end if opt.save_image then if opt.save_baseline_image and baseline_output then image.save(path.join(opt.output_dir, string.format("%s_baseline.png", basename)), baseline_output) end if model1_output then image.save(path.join(opt.output_dir, string.format("%s_model1.png", basename)), model1_output) end if model2_output then image.save(path.join(opt.output_dir, string.format("%s_model2.png", basename)), model2_output) end end if opt.show_progress or i == #x then if am then if model2 then io.stdout:write( string.format("%d/%d; model1_time=%.2f, model2_time=%.2f, model1_%s=%.3f, model2_%s=%.3f \r", i, #x, model1_time, model2_time, am.name, model1_am / i, am.name, model2_am / i )) else io.stdout:write( string.format("%d/%d; model1_time=%.2f, model1_%s=%.3f \r", i, #x, model1_time, am.name, model1_am / i )) end else if model2 then if baseline_output then io.stdout:write( string.format("%d/%d; model1_time=%.2f, model2_time=%.2f, baseline_rmse=%.3f, model1_rmse=%.3f, model2_rmse=%.3f, baseline_psnr=%.3f, model1_psnr=%.3f, model2_psnr=%.3f, model1_won=%d, model2_won=%d \r", i, #x, model1_time, model2_time, math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i), math.sqrt(model2_mse / i), baseline_psnr / i, model1_psnr / i, model2_psnr / i, won[1], won[2] )) else io.stdout:write( string.format("%d/%d; model1_time=%.2f, model2_time=%.2f, model1_rmse=%.3f, model2_rmse=%.3f, model1_psnr=%.3f, model2_psnr=%.3f, model1_own=%d, model2_won=%d \r", i, #x, model1_time, model2_time, math.sqrt(model1_mse / i), math.sqrt(model2_mse / i), model1_psnr / i, model2_psnr / i, won[1], won[2] )) end else if baseline_output then io.stdout:write( string.format("%d/%d; model1_time=%.2f, baseline_rmse=%.3f, model1_rmse=%.3f, baseline_psnr=%.3f, model1_psnr=%.3f \r", i, #x, model1_time, math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i), baseline_psnr / i, model1_psnr / i )) else io.stdout:write( string.format("%d/%d; model1_time=%.2f, model1_rmse=%.3f, model1_psnr=%.3f \r", i, #x, model1_time, math.sqrt(model1_mse / i), model1_psnr / i )) end end end io.stdout:flush() end end if opt.save_info then local fp = io.open(path.join(opt.output_dir, "benchmark.txt"), "w") fp:write("options : " .. cjson.encode(opt) .. "\n") if baseline_psnr > 0 then fp:write(string.format("baseline: RMSE = %.3f, PSNR = %.3f\n", math.sqrt(baseline_mse / #x), baseline_psnr / #x)) end if model1_psnr > 0 then fp:write(string.format("model1 : RMSE = %.3f, PSNR = %.3f, evaluation time = %.3f\n", math.sqrt(model1_mse / #x), model1_psnr / #x, model1_time)) end if model2_psnr > 0 then fp:write(string.format("model2 : RMSE = %.3f, PSNR = %.3f, evaluation time = %.3f\n", math.sqrt(model2_mse / #x), model2_psnr / #x, model2_time)) end if model1_am > 0 then fp:write(string.format("model1 : %s = %.3f, evaluation time = %.3f\n", math.sqrt(model1_am / #x), model1_time)) end if model2_am > 0 then fp:write(string.format("model2 : %s = %.3f, evaluation time = %.3f\n", math.sqrt(model2_am / #x), model2_time)) end fp:close() if detail_fp then detail_fp:close() end end io.stdout:write("\n") end local function load_data_from_dir(test_dir) local test_x = {} local files = dir.getfiles(test_dir, "*.*") for i = 1, #files do local name = path.basename(files[i]) local e = path.extension(name) local base = name:sub(0, name:len() - e:len()) local img = image_loader.load_byte(files[i]) if img then table.insert(test_x, {y = iproc.crop_mod4(img), basename = base}) end if i % 10 == 0 then if opt.show_progress then xlua.progress(i, #files) end collectgarbage() end end return test_x end local function load_data_from_file(test_file) local test_x = {} local files = utils.split(file.read(test_file), "\n") for i = 1, #files do local name = path.basename(files[i]) local e = path.extension(name) local base = name:sub(0, name:len() - e:len()) local img = image_loader.load_byte(files[i]) if img then table.insert(test_x, {y = iproc.crop_mod4(img), basename = base}) end if i % 10 == 0 then if opt.show_progress then xlua.progress(i, #files) end collectgarbage() end end return test_x end local function get_basename(f) local name = path.basename(f) local e = path.extension(name) local base = name:sub(0, name:len() - e:len()) return base end local function load_user_data(y_dir, y_file, x_dir, x_file) local test = {} local y_files local x_files if y_file:len() > 0 then y_files = utils.split(file.read(y_file), "\n") else y_files = dir.getfiles(y_dir, "*.*") end if x_file:len() > 0 then x_files = utils.split(file.read(x_file), "\n") else x_files = dir.getfiles(x_dir, "*.*") end local basename_db = {} for i = 1, #y_files do basename_db[get_basename(y_files[i])] = {y = y_files[i]} end for i = 1, #x_files do local key = get_basename(x_files[i]) if basename_db[key] then basename_db[key].x = x_files[i] else error(string.format("%s is not found in %s", key, y_dir)) end end for i = 1, #y_files do local key = get_basename(y_files[i]) local d = basename_db[key] if not (d.x and d.y) then error(string.format("%s is not found in %s", key, x_dir)) end end for i = 1, #y_files do local key = get_basename(y_files[i]) local x = image_loader.load_byte(basename_db[key].x) local y = image_loader.load_byte(basename_db[key].y) if x and y then table.insert(test, {y = y, x = x, basename = key}) end if i % 10 == 0 then if opt.show_progress then xlua.progress(i, #y_files) end collectgarbage() end end return test end function load_noise_scale_model(model_dir, noise_level, force_cudnn) local f = path.join(model_dir, string.format("noise%d_scale2.0x_model.t7", opt.noise_level)) local s1, noise_scale = pcall(w2nn.load_model, f, force_cudnn) local model = {} if not s1 then f = path.join(model_dir, string.format("noise%d_model.t7", opt.noise_level)) local noise s1, noise = pcall(w2nn.load_model, f, force_cudnn) if not s1 then model.noise_model = nil print(model_dir .. "'s noise model is not found. benchmark will use only scale model.") else model.noise_model = noise end f = path.join(model_dir, "scale2.0x_model.t7") local scale s1, scale = pcall(w2nn.load_model, f, force_cudnn) if not s1 then error(model_dir .. ": load error") return nil end model.scale_model = scale else model.noise_scale_model = noise_scale end return model end if opt.show_progress then print(opt) end if opt.method == "scale" or opt.method == "scale4" then local f1 = path.join(opt.model1_dir, "scale2.0x_model.t7") local f2 = path.join(opt.model2_dir, "scale2.0x_model.t7") local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn) local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn) if not s1 then error("Load error: " .. f1) end if not s2 then model2 = nil end local test_x if opt.file:len() > 0 then test_x = load_data_from_file(opt.file) else test_x = load_data_from_dir(opt.dir) end benchmark(opt, test_x, model1, model2) elseif opt.method == "noise" then local f1 = path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level)) local f2 = path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level)) local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn) local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn) if not s1 then error("Load error: " .. f1) end if not s2 then model2 = nil end local test_x if opt.file:len() > 0 then test_x = load_data_from_file(opt.file) else test_x = load_data_from_dir(opt.dir) end benchmark(opt, test_x, model1, model2) elseif opt.method == "noise_scale" then local model2 = nil local model1 = load_noise_scale_model(opt.model1_dir, opt.noise_level, opt.force_cudnn) if opt.model2_dir:len() > 0 then model2 = load_noise_scale_model(opt.model2_dir, opt.noise_level, opt.force_cudnn) end local test_x if opt.file:len() > 0 then test_x = load_data_from_file(opt.file) else test_x = load_data_from_dir(opt.dir) end benchmark(opt, test_x, model1, model2) elseif opt.method == "user" then local f1 = path.join(opt.model1_dir, string.format("%s_model.t7", opt.name)) local f2 = path.join(opt.model2_dir, string.format("%s_model.t7", opt.name)) local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn) local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn) if not s1 then error("Load error: " .. f1) end if not s2 then model2 = nil end local test = load_user_data(opt.y_dir, opt.y_file, opt.x_dir, opt.x_file) benchmark(opt, test, model1, model2) elseif opt.method == "diff" then local test = load_user_data(opt.y_dir, opt.y_file, opt.x_dir, opt.x_file) benchmark(opt, test, nil, nil) end