#!/bin/python3 # # vGPU unlock script for consumer GPUs. # # Copyright 2021 Jonathan Johansson # This file is part of the "vgpu_unlock" project, and is distributed under the MIT License. # See the LICENSE file for more details. # import errno import frida import os import queue import subprocess import sys import time script_source = r""" // Value of the "request" argument used by nvidia-vgpud and nvidia-vgpu-mgr // when calling ioctl to read the PCI device ID and type (and possibly // other things) from the GPU. var REQ_QUERY_GPU = ptr("0xC020462A"); // When issuing ioctl with REQ_QUERY_GPU then the "argp" argument is a // pointer to a structure something like this: // // struct arg { // uint32_t unknown_1; // Initialized prior to call. // uint32_t unknown_2; // Initialized prior to call. // uint32_t op_type; // Operation type, see comment below. // uint32_t padding_1; // Always set to 0 prior to call. // void* result; // Pointer initialized prior to call. // // Pointee initialized to 0 prior to call. // // Pointee is written by ioctl call. // uint32_t unknown_4; // Set to 0x10 for READ_PCI_ID and set to 4 for // READ_DEV_TYPE prior to call. // uint32_t status; // Written by ioctl call. See comment below. // } // These are the observed values for the op_type member. var OP_READ_DEV_TYPE = 0x800289; // *result type is uint64_t. var OP_READ_PCI_ID = 0x20801801; // *result type is uint16_t[4], the second // element (index 1) is the device ID, the // forth element (index 3) is the subsystem // ID. // nvidia-vgpu-mgr expects this value for a vGPU capable GPU. var DEV_TYPE_VGPU_CAPABLE = uint64(3); // When ioctl returns success (retval >= 0) but sets the status value of // the arg structure to 3 then nvidia-vgpud will sleep for a bit (first // 0.1s then 1s then 10s) then issue the same ioctl call again until the // status differs from 3. It will attempt this for up to 24h before giving // up. var STATUS_TRY_AGAIN = 3; Interceptor.attach(Module.getExportByName(null, "ioctl"), { onEnter(args) { this.request = args[1]; this.argp = args[2]; }, onLeave(retVal) { if(!this.request.equals(REQ_QUERY_GPU)) { // Not a call we care about. return; } if(retVal.toInt32() < 0) { // Call failed. return; } // Lookup status value according to struct above. var status = this.argp.add(0x1C).readU32(); if(status == STATUS_TRY_AGAIN) { // Driver will try again. return; } var op_type = this.argp.add(8).readU32(); if(op_type == OP_READ_PCI_ID) { // Lookup address of the device and subsystem IDs. var devid_ptr = this.argp.add(0x10).readPointer().add(2); var subsysid_ptr = this.argp.add(0x10).readPointer().add(6); // Now we replace the device ID with a spoofed value that needs to // be determined such that the spoofed value represents a GPU with // vGPU support that uses the same GPU chip as our actual GPU. var actual_devid = devid_ptr.readU16(); var spoofed_devid = actual_devid; var actual_subsysid = subsysid_ptr.readU16(); var spoofed_subsysid = actual_subsysid; // GP102 if(actual_devid == 0x1b00 || // TITAN X (Pascal) actual_devid == 0x1b02 || // TITAN Xp actual_devid == 0x1b06 || // GTX 1080 Ti actual_devid == 0x1b30) { // Quadro P6000 spoofed_devid = 0x1b38; // Tesla P40 } // GP104 if(actual_devid == 0x1b80 || // GTX 1080 actual_devid == 0x1b81 || // GTX 1070 actual_devid == 0x1b82 || // GTX 1070 Ti actual_devid == 0x1b83 || // GTX 1060 6GB actual_devid == 0x1b84 || // GTX 1060 3GB actual_devid == 0x1bb0) { // Quadro P5000 spoofed_devid = 0x1bb3; // Tesla P4 } // TU102 if(actual_devid == 0x1e02 || // TITAN RTX actual_devid == 0x1e04 || // RTX 2080 Ti actual_devid == 0x1e07) { // RTX 2080 Ti Rev. A spoofed_devid = 0x1e30; // Quadro RTX 6000 spoofed_subsysid = 0x12ba; } // TU104 if(actual_devid == 0x1e81 || // RTX 2080 Super actual_devid == 0x1e82 || // RTX 2080 actual_devid == 0x1e84 || // RTX 2070 Super actual_devid == 0x1e87 || // RTX 2080 Rev. A actual_devid == 0x1e89 || // RTX 2060 actual_devid == 0x1eb0 || // Quadro RTX 5000 actual_devid == 0x1eb1) { // Quadro RTX 4000 spoofed_devid = 0x1eb8; // Tesla T4 } // GA102 if(actual_devid == 0x2204 || // RTX 3090 actual_devid == 0x2205 || // RTX 3080 Ti actual_devid == 0x2206) { // RTX 3080 spoofed_devid = 0x2235; // RTX A40 } devid_ptr.writeU16(spoofed_devid); subsysid_ptr.writeU16(spoofed_subsysid); } if(op_type == OP_READ_DEV_TYPE) { // Set device type to vGPU capable. var dev_type_ptr = this.argp.add(0x10).readPointer(); dev_type_ptr.writeU64(DEV_TYPE_VGPU_CAPABLE); } } }); """ device = frida.get_local_device() child_processes = queue.Queue() def instrument(pid): """Instrument and resume process. :param pid: Process identifier """ session = device.attach(pid) # We need to also instrument the children since nvidia-vgpud forks itself # when initially launched. session.enable_child_gating() script = session.create_script(script_source) script.load() device.resume(pid) def on_child_added(child): """Callback for when a new child process has been created. :param child: The newly created child process. """ child_processes.put(child.pid) instrument(child.pid) def wait_exit(pid): """Wait for a process to terminate. :param pid: Process ID of the target process. """ while 1: time.sleep(.1) try: os.kill(pid, 0) except OSError as e: if e.errno == errno.ESRCH: break def main(): """Entrypoint.""" # Behave at least a little bit like a forking service. if sys.argv[1] != "-f": subprocess.Popen([sys.argv[0], "-f"] + sys.argv[1:]) exit() device.on("child-added", on_child_added) pid = device.spawn(sys.argv[2]) instrument(pid) # Wait for everything to terminate before exiting. wait_exit(pid) while not child_processes.empty(): wait_exit(child_processes.get_nowait()) if __name__ == "__main__": main()