btop/src/linux/btop_collect.cpp
2024-02-29 22:11:39 -08:00

2900 lines
103 KiB
C++

/* Copyright 2021 Aristocratos (jakob@qvantnet.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
indent = tab
tab-size = 4
*/
#include <cstdlib>
#include <unordered_map>
#include <unordered_set>
#include <fstream>
#include <ranges>
#include <cmath>
#include <unistd.h>
#include <numeric>
#include <sys/statvfs.h>
#include <netdb.h>
#include <ifaddrs.h>
#include <net/if.h>
#include <arpa/inet.h> // for inet_ntop()
#include <filesystem>
#include <future>
#include <dlfcn.h>
#include <unordered_map>
#include <utility>
#if defined(RSMI_STATIC)
#include <rocm_smi/rocm_smi.h>
#endif
#if !(defined(STATIC_BUILD) && defined(__GLIBC__))
#include <pwd.h>
#endif
#include "../btop_shared.hpp"
#include "../btop_config.hpp"
#include "../btop_tools.hpp"
using std::clamp;
using std::cmp_greater;
using std::cmp_less;
using std::ifstream;
using std::max;
using std::min;
using std::numeric_limits;
using std::round;
using std::streamsize;
using std::vector;
using std::future;
using std::async;
using std::pair;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
using namespace std::literals; // for operator""s
using namespace std::chrono_literals;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------
namespace Cpu {
vector<long long> core_old_totals;
vector<long long> core_old_idles;
vector<string> available_fields = {"Auto", "total"};
vector<string> available_sensors = {"Auto"};
cpu_info current_cpu;
fs::path freq_path = "/sys/devices/system/cpu/cpufreq/policy0/scaling_cur_freq";
bool got_sensors{};
bool cpu_temp_only{};
//* Populate found_sensors map
bool get_sensors();
//* Get current cpu clock speed
string get_cpuHz();
//* Search /proc/cpuinfo for a cpu name
string get_cpuName();
struct Sensor {
fs::path path;
string label;
int64_t temp{};
int64_t high{};
int64_t crit{};
};
std::unordered_map<string, Sensor> found_sensors;
string cpu_sensor;
vector<string> core_sensors;
std::unordered_map<int, int> core_mapping;
}
namespace Gpu {
vector<gpu_info> gpus;
#ifdef GPU_SUPPORT
//? NVIDIA data collection
namespace Nvml {
//? NVML defines, structs & typedefs
#define NVML_DEVICE_NAME_BUFFER_SIZE 64
#define NVML_SUCCESS 0
#define NVML_TEMPERATURE_THRESHOLD_SHUTDOWN 0
#define NVML_CLOCK_GRAPHICS 0
#define NVML_CLOCK_MEM 2
#define NVML_TEMPERATURE_GPU 0
#define NVML_PCIE_UTIL_TX_BYTES 0
#define NVML_PCIE_UTIL_RX_BYTES 1
typedef void* nvmlDevice_t; // we won't be accessing any of the underlying struct's properties, so this is fine
typedef int nvmlReturn_t, // enums are basically ints
nvmlTemperatureThresholds_t,
nvmlClockType_t,
nvmlPstates_t,
nvmlTemperatureSensors_t,
nvmlPcieUtilCounter_t;
struct nvmlUtilization_t {unsigned int gpu, memory;};
struct nvmlMemory_t {unsigned long long total, free, used;};
//? Function pointers
const char* (*nvmlErrorString)(nvmlReturn_t);
nvmlReturn_t (*nvmlInit)();
nvmlReturn_t (*nvmlShutdown)();
nvmlReturn_t (*nvmlDeviceGetCount)(unsigned int*);
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t*);
nvmlReturn_t (*nvmlDeviceGetName)(nvmlDevice_t, char*, unsigned int);
nvmlReturn_t (*nvmlDeviceGetPowerManagementLimit)(nvmlDevice_t, unsigned int*);
nvmlReturn_t (*nvmlDeviceGetTemperatureThreshold)(nvmlDevice_t, nvmlTemperatureThresholds_t, unsigned int*);
nvmlReturn_t (*nvmlDeviceGetUtilizationRates)(nvmlDevice_t, nvmlUtilization_t*);
nvmlReturn_t (*nvmlDeviceGetClockInfo)(nvmlDevice_t, nvmlClockType_t, unsigned int*);
nvmlReturn_t (*nvmlDeviceGetPowerUsage)(nvmlDevice_t, unsigned int*);
nvmlReturn_t (*nvmlDeviceGetPowerState)(nvmlDevice_t, nvmlPstates_t*);
nvmlReturn_t (*nvmlDeviceGetTemperature)(nvmlDevice_t, nvmlTemperatureSensors_t, unsigned int*);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t*);
nvmlReturn_t (*nvmlDeviceGetPcieThroughput)(nvmlDevice_t, nvmlPcieUtilCounter_t, unsigned int*);
//? Data
void* nvml_dl_handle;
bool initialized = false;
bool init();
bool shutdown();
template <bool is_init> bool collect(gpu_info* gpus_slice);
vector<nvmlDevice_t> devices;
unsigned int device_count = 0;
}
//? AMD data collection
namespace Rsmi {
#if !defined(RSMI_STATIC)
//? RSMI defines, structs & typedefs
#define RSMI_MAX_NUM_FREQUENCIES_V5 32
#define RSMI_MAX_NUM_FREQUENCIES_V6 33
#define RSMI_STATUS_SUCCESS 0
#define RSMI_MEM_TYPE_VRAM 0
#define RSMI_TEMP_CURRENT 0
#define RSMI_TEMP_TYPE_EDGE 0
#define RSMI_CLK_TYPE_MEM 4
#define RSMI_CLK_TYPE_SYS 0
#define RSMI_TEMP_MAX 1
typedef int rsmi_status_t,
rsmi_temperature_metric_t,
rsmi_clk_type_t,
rsmi_memory_type_t;
struct rsmi_version_t {uint32_t major, minor, patch; const char* build;};
struct rsmi_frequencies_t_v5 {uint32_t num_supported, current; uint64_t frequency[RSMI_MAX_NUM_FREQUENCIES_V5];};
struct rsmi_frequencies_t_v6 {bool has_deep_sleep; uint32_t num_supported, current; uint64_t frequency[RSMI_MAX_NUM_FREQUENCIES_V6];};
//? Function pointers
rsmi_status_t (*rsmi_init)(uint64_t);
rsmi_status_t (*rsmi_shut_down)();
rsmi_status_t (*rsmi_version_get)(rsmi_version_t*);
rsmi_status_t (*rsmi_num_monitor_devices)(uint32_t*);
rsmi_status_t (*rsmi_dev_name_get)(uint32_t, char*, size_t);
rsmi_status_t (*rsmi_dev_power_cap_get)(uint32_t, uint32_t, uint64_t*);
rsmi_status_t (*rsmi_dev_temp_metric_get)(uint32_t, uint32_t, rsmi_temperature_metric_t, int64_t*);
rsmi_status_t (*rsmi_dev_busy_percent_get)(uint32_t, uint32_t*);
rsmi_status_t (*rsmi_dev_memory_busy_percent_get)(uint32_t, uint32_t*);
rsmi_status_t (*rsmi_dev_gpu_clk_freq_get_v5)(uint32_t, rsmi_clk_type_t, rsmi_frequencies_t_v5*);
rsmi_status_t (*rsmi_dev_gpu_clk_freq_get_v6)(uint32_t, rsmi_clk_type_t, rsmi_frequencies_t_v6*);
rsmi_status_t (*rsmi_dev_power_ave_get)(uint32_t, uint32_t, uint64_t*);
rsmi_status_t (*rsmi_dev_memory_total_get)(uint32_t, rsmi_memory_type_t, uint64_t*);
rsmi_status_t (*rsmi_dev_memory_usage_get)(uint32_t, rsmi_memory_type_t, uint64_t*);
rsmi_status_t (*rsmi_dev_pci_throughput_get)(uint32_t, uint64_t*, uint64_t*, uint64_t*);
uint32_t version_major = 0;
//? Data
void* rsmi_dl_handle;
#endif
bool initialized = false;
bool init();
bool shutdown();
template <bool is_init> bool collect(gpu_info* gpus_slice);
uint32_t device_count = 0;
}
#endif
}
namespace Mem {
double old_uptime;
}
namespace Shared {
fs::path procPath, passwd_path;
long pageSize, clkTck, coreCount;
void init() {
//? Shared global variables init
procPath = (fs::is_directory(fs::path("/proc")) and access("/proc", R_OK) != -1) ? "/proc" : "";
if (procPath.empty())
throw std::runtime_error("Proc filesystem not found or no permission to read from it!");
passwd_path = (fs::is_regular_file(fs::path("/etc/passwd")) and access("/etc/passwd", R_OK) != -1) ? "/etc/passwd" : "";
if (passwd_path.empty())
Logger::warning("Could not read /etc/passwd, will show UID instead of username.");
coreCount = sysconf(_SC_NPROCESSORS_ONLN);
if (coreCount < 1) {
coreCount = sysconf(_SC_NPROCESSORS_CONF);
if (coreCount < 1) {
coreCount = 1;
Logger::warning("Could not determine number of cores, defaulting to 1.");
}
}
pageSize = sysconf(_SC_PAGE_SIZE);
if (pageSize <= 0) {
pageSize = 4096;
Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
}
clkTck = sysconf(_SC_CLK_TCK);
if (clkTck <= 0) {
clkTck = 100;
Logger::warning("Could not get system clock ticks per second. Defaulting to 100, processes cpu usage might be incorrect.");
}
//? Init for namespace Cpu
if (not fs::exists(Cpu::freq_path) or access(Cpu::freq_path.c_str(), R_OK) == -1) Cpu::freq_path.clear();
Cpu::current_cpu.core_percent.insert(Cpu::current_cpu.core_percent.begin(), Shared::coreCount, {});
Cpu::current_cpu.temp.insert(Cpu::current_cpu.temp.begin(), Shared::coreCount + 1, {});
Cpu::core_old_totals.insert(Cpu::core_old_totals.begin(), Shared::coreCount, 0);
Cpu::core_old_idles.insert(Cpu::core_old_idles.begin(), Shared::coreCount, 0);
Cpu::collect();
if (Runner::coreNum_reset) Runner::coreNum_reset = false;
for (auto& [field, vec] : Cpu::current_cpu.cpu_percent) {
if (not vec.empty() and not v_contains(Cpu::available_fields, field)) Cpu::available_fields.push_back(field);
}
Cpu::cpuName = Cpu::get_cpuName();
Cpu::got_sensors = Cpu::get_sensors();
for (const auto& [sensor, ignored] : Cpu::found_sensors) {
Cpu::available_sensors.push_back(sensor);
}
Cpu::core_mapping = Cpu::get_core_mapping();
//? Init for namespace Gpu
#ifdef GPU_SUPPORT
Gpu::Nvml::init();
Gpu::Rsmi::init();
if (not Gpu::gpu_names.empty()) {
for (auto const& [key, _] : Gpu::gpus[0].gpu_percent)
Cpu::available_fields.push_back(key);
for (auto const& [key, _] : Gpu::shared_gpu_percent)
Cpu::available_fields.push_back(key);
using namespace Gpu;
gpu_b_height_offsets.resize(gpus.size());
for (size_t i = 0; i < gpu_b_height_offsets.size(); ++i)
gpu_b_height_offsets[i] = gpus[i].supported_functions.gpu_utilization
+ gpus[i].supported_functions.pwr_usage
+ (gpus[i].supported_functions.mem_total or gpus[i].supported_functions.mem_used)
* (1 + 2*(gpus[i].supported_functions.mem_total and gpus[i].supported_functions.mem_used) + 2*gpus[i].supported_functions.mem_utilization);
}
#endif
//? Init for namespace Mem
Mem::old_uptime = system_uptime();
Mem::collect();
Logger::debug("Shared::init() : Initialized.");
}
}
namespace Cpu {
string cpuName;
string cpuHz;
bool has_battery = true;
tuple<int, float, long, string> current_bat;
const array time_names {
"user"s, "nice"s, "system"s, "idle"s, "iowait"s,
"irq"s, "softirq"s, "steal"s, "guest"s, "guest_nice"s
};
std::unordered_map<string, long long> cpu_old = {
{"totals", 0},
{"idles", 0},
{"user", 0},
{"nice", 0},
{"system", 0},
{"idle", 0},
{"iowait", 0},
{"irq", 0},
{"softirq", 0},
{"steal", 0},
{"guest", 0},
{"guest_nice", 0}
};
string get_cpuName() {
string name;
ifstream cpuinfo(Shared::procPath / "cpuinfo");
if (cpuinfo.good()) {
for (string instr; getline(cpuinfo, instr, ':') and not instr.starts_with("model name");)
cpuinfo.ignore(SSmax, '\n');
if (cpuinfo.bad()) return name;
else if (not cpuinfo.eof()) {
cpuinfo.ignore(1);
getline(cpuinfo, name);
}
else if (fs::exists("/sys/devices")) {
for (const auto& d : fs::directory_iterator("/sys/devices")) {
if (string(d.path().filename()).starts_with("arm")) {
name = d.path().filename();
break;
}
}
if (not name.empty()) {
auto name_vec = ssplit(name, '_');
if (name_vec.size() < 2) return capitalize(name);
else return capitalize(name_vec.at(1)) + (name_vec.size() > 2 ? ' ' + capitalize(name_vec.at(2)) : "");
}
}
auto name_vec = ssplit(name, ' ');
if ((s_contains(name, "Xeon"s) or v_contains(name_vec, "Duo"s)) and v_contains(name_vec, "CPU"s)) {
auto cpu_pos = v_index(name_vec, "CPU"s);
if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')'))
name = name_vec.at(cpu_pos + 1);
else
name.clear();
}
else if (v_contains(name_vec, "Ryzen"s)) {
auto ryz_pos = v_index(name_vec, "Ryzen"s);
name = "Ryzen" + (ryz_pos < name_vec.size() - 1 ? ' ' + name_vec.at(ryz_pos + 1) : "")
+ (ryz_pos < name_vec.size() - 2 ? ' ' + name_vec.at(ryz_pos + 2) : "");
}
else if (s_contains(name, "Intel"s) and v_contains(name_vec, "CPU"s)) {
auto cpu_pos = v_index(name_vec, "CPU"s);
if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')') and name_vec.at(cpu_pos + 1).size() != 1)
name = name_vec.at(cpu_pos + 1);
else
name.clear();
}
else
name.clear();
if (name.empty() and not name_vec.empty()) {
for (const auto& n : name_vec) {
if (n == "@") break;
name += n + ' ';
}
name.pop_back();
for (const auto& replace : {"Processor", "CPU", "(R)", "(TM)", "Intel", "AMD", "Core"}) {
name = s_replace(name, replace, "");
name = s_replace(name, " ", " ");
}
name = trim(name);
}
}
return name;
}
bool get_sensors() {
bool got_cpu = false, got_coretemp = false;
vector<fs::path> search_paths;
try {
//? Setup up paths to search for sensors
if (fs::exists(fs::path("/sys/class/hwmon")) and access("/sys/class/hwmon", R_OK) != -1) {
for (const auto& dir : fs::directory_iterator(fs::path("/sys/class/hwmon"))) {
fs::path add_path = fs::canonical(dir.path());
if (v_contains(search_paths, add_path) or v_contains(search_paths, add_path / "device")) continue;
if (s_contains(add_path, "coretemp"))
got_coretemp = true;
for (const auto & file : fs::directory_iterator(add_path)) {
if (string(file.path().filename()) == "device") {
for (const auto & dev_file : fs::directory_iterator(file.path())) {
string dev_filename = dev_file.path().filename();
if (dev_filename.starts_with("temp") and dev_filename.ends_with("_input")) {
search_paths.push_back(file.path());
break;
}
}
}
string filename = file.path().filename();
if (filename.starts_with("temp") and filename.ends_with("_input")) {
search_paths.push_back(add_path);
break;
}
}
}
}
if (not got_coretemp and fs::exists(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) {
for (auto& d : fs::directory_iterator(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) {
fs::path add_path = fs::canonical(d.path());
for (const auto & file : fs::directory_iterator(add_path)) {
string filename = file.path().filename();
if (filename.starts_with("temp") and filename.ends_with("_input") and not v_contains(search_paths, add_path)) {
search_paths.push_back(add_path);
got_coretemp = true;
break;
}
}
}
}
//? Scan any found directories for temperature sensors
if (not search_paths.empty()) {
for (const auto& path : search_paths) {
const string pname = readfile(path / "name", path.filename());
for (const auto & file : fs::directory_iterator(path)) {
const string file_suffix = "input";
const int file_id = atoi(file.path().filename().c_str() + 4); // skip "temp" prefix
string file_path = file.path();
if (!s_contains(file_path, file_suffix)) {
continue;
}
const string basepath = file_path.erase(file_path.find(file_suffix), file_suffix.length());
const string label = readfile(fs::path(basepath + "label"), "temp" + to_string(file_id));
const string sensor_name = pname + "/" + label;
const int64_t temp = stol(readfile(fs::path(basepath + "input"), "0")) / 1000;
const int64_t high = stol(readfile(fs::path(basepath + "max"), "80000")) / 1000;
const int64_t crit = stol(readfile(fs::path(basepath + "crit"), "95000")) / 1000;
found_sensors[sensor_name] = {fs::path(basepath + "input"), label, temp, high, crit};
if (not got_cpu and (label.starts_with("Package id") or label.starts_with("Tdie"))) {
got_cpu = true;
cpu_sensor = sensor_name;
}
else if (label.starts_with("Core") or label.starts_with("Tccd")) {
got_coretemp = true;
if (not v_contains(core_sensors, sensor_name)) core_sensors.push_back(sensor_name);
}
}
}
}
//? If no good candidate for cpu temp has been found scan /sys/class/thermal
if (not got_cpu and fs::exists(fs::path("/sys/class/thermal"))) {
const string rootpath = fs::path("/sys/class/thermal/thermal_zone");
for (int i = 0; fs::exists(fs::path(rootpath + to_string(i))); i++) {
const fs::path basepath = rootpath + to_string(i);
if (not fs::exists(basepath / "temp")) continue;
const string label = readfile(basepath / "type", "temp" + to_string(i));
const string sensor_name = "thermal" + to_string(i) + "/" + label;
const int64_t temp = stol(readfile(basepath / "temp", "0")) / 1000;
int64_t high, crit;
for (int ii = 0; fs::exists(basepath / string("trip_point_" + to_string(ii) + "_temp")); ii++) {
const string trip_type = readfile(basepath / string("trip_point_" + to_string(ii) + "_type"));
if (not is_in(trip_type, "high", "critical")) continue;
auto& val = (trip_type == "high" ? high : crit);
val = stol(readfile(basepath / string("trip_point_" + to_string(ii) + "_temp"), "0")) / 1000;
}
if (high < 1) high = 80;
if (crit < 1) crit = 95;
found_sensors[sensor_name] = {basepath / "temp", label, temp, high, crit};
}
}
}
catch (...) {}
if (not got_coretemp or core_sensors.empty()) {
cpu_temp_only = true;
}
else {
rng::sort(core_sensors, rng::less{});
rng::stable_sort(core_sensors, [](const auto& a, const auto& b){
return a.size() < b.size();
});
}
if (cpu_sensor.empty() and not found_sensors.empty()) {
for (const auto& [name, sensor] : found_sensors) {
if (s_contains(str_to_lower(name), "cpu") or s_contains(str_to_lower(name), "k10temp")) {
cpu_sensor = name;
break;
}
}
if (cpu_sensor.empty()) {
cpu_sensor = found_sensors.begin()->first;
Logger::warning("No good candidate for cpu sensor found, using random from all found sensors.");
}
}
return not found_sensors.empty();
}
void update_sensors() {
if (cpu_sensor.empty()) return;
const auto& cpu_sensor = (not Config::getS("cpu_sensor").empty() and found_sensors.contains(Config::getS("cpu_sensor")) ? Config::getS("cpu_sensor") : Cpu::cpu_sensor);
found_sensors.at(cpu_sensor).temp = stol(readfile(found_sensors.at(cpu_sensor).path, "0")) / 1000;
current_cpu.temp.at(0).push_back(found_sensors.at(cpu_sensor).temp);
current_cpu.temp_max = found_sensors.at(cpu_sensor).crit;
if (current_cpu.temp.at(0).size() > 20) current_cpu.temp.at(0).pop_front();
if (Config::getB("show_coretemp") and not cpu_temp_only) {
vector<string> done;
for (const auto& sensor : core_sensors) {
if (v_contains(done, sensor)) continue;
found_sensors.at(sensor).temp = stol(readfile(found_sensors.at(sensor).path, "0")) / 1000;
done.push_back(sensor);
}
for (const auto& [core, temp] : core_mapping) {
if (cmp_less(core + 1, current_cpu.temp.size()) and cmp_less(temp, core_sensors.size())) {
current_cpu.temp.at(core + 1).push_back(found_sensors.at(core_sensors.at(temp)).temp);
if (current_cpu.temp.at(core + 1).size() > 20) current_cpu.temp.at(core + 1).pop_front();
}
}
}
}
string get_cpuHz() {
static int failed{};
if (failed > 4)
return ""s;
string cpuhz;
try {
double hz{};
//? Try to get freq from /sys/devices/system/cpu/cpufreq/policy first (faster)
if (not freq_path.empty()) {
hz = stod(readfile(freq_path, "0.0")) / 1000;
if (hz <= 0.0 and ++failed >= 2)
freq_path.clear();
}
//? If freq from /sys failed or is missing try to use /proc/cpuinfo
if (hz <= 0.0) {
ifstream cpufreq(Shared::procPath / "cpuinfo");
if (cpufreq.good()) {
while (cpufreq.ignore(SSmax, '\n')) {
if (cpufreq.peek() == 'c') {
cpufreq.ignore(SSmax, ' ');
if (cpufreq.peek() == 'M') {
cpufreq.ignore(SSmax, ':');
cpufreq.ignore(1);
cpufreq >> hz;
break;
}
}
}
}
}
if (hz <= 1 or hz >= 1000000)
throw std::runtime_error("Failed to read /sys/devices/system/cpu/cpufreq/policy and /proc/cpuinfo.");
if (hz >= 1000) {
if (hz >= 10000) cpuhz = to_string((int)round(hz / 1000)); // Future proof until we reach THz speeds :)
else cpuhz = to_string(round(hz / 100) / 10.0).substr(0, 3);
cpuhz += " GHz";
}
else if (hz > 0)
cpuhz = to_string((int)hz) + " MHz";
}
catch (const std::exception& e) {
if (++failed < 5)
return ""s;
else {
Logger::warning("get_cpuHZ() : " + string{e.what()});
return ""s;
}
}
return cpuhz;
}
auto get_core_mapping() -> std::unordered_map<int, int> {
std::unordered_map<int, int> core_map;
if (cpu_temp_only) return core_map;
//? Try to get core mapping from /proc/cpuinfo
ifstream cpuinfo(Shared::procPath / "cpuinfo");
if (cpuinfo.good()) {
int cpu{};
int core{};
int n{};
for (string instr; cpuinfo >> instr;) {
if (instr == "processor") {
cpuinfo.ignore(SSmax, ':');
cpuinfo >> cpu;
}
else if (instr.starts_with("core")) {
cpuinfo.ignore(SSmax, ':');
cpuinfo >> core;
if (std::cmp_greater_equal(core, core_sensors.size())) {
if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
core_map[cpu] = n++;
}
else
core_map[cpu] = core;
}
cpuinfo.ignore(SSmax, '\n');
}
}
//? If core mapping from cpuinfo was incomplete try to guess remainder, if missing completely, map 0-0 1-1 2-2 etc.
if (cmp_less(core_map.size(), Shared::coreCount)) {
if (Shared::coreCount % 2 == 0 and (long)core_map.size() == Shared::coreCount / 2) {
for (int i = 0, n = 0; i < Shared::coreCount / 2; i++) {
if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
core_map[Shared::coreCount / 2 + i] = n++;
}
}
else {
core_map.clear();
for (int i = 0, n = 0; i < Shared::coreCount; i++) {
if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
core_map[i] = n++;
}
}
}
//? Apply user set custom mapping if any
const auto& custom_map = Config::getS("cpu_core_map");
if (not custom_map.empty()) {
try {
for (const auto& split : ssplit(custom_map)) {
const auto vals = ssplit(split, ':');
if (vals.size() != 2) continue;
int change_id = std::stoi(vals.at(0));
int new_id = std::stoi(vals.at(1));
if (not core_map.contains(change_id) or cmp_greater(new_id, core_sensors.size())) continue;
core_map.at(change_id) = new_id;
}
}
catch (...) {}
}
return core_map;
}
struct battery {
fs::path base_dir, energy_now, charge_now, energy_full, charge_full, power_now, current_now, voltage_now, status, online;
string device_type;
bool use_energy_or_charge = true;
bool use_power = true;
};
auto get_battery() -> tuple<int, float, long, string> {
if (not has_battery) return {0, 0, 0, ""};
static string auto_sel;
static std::unordered_map<string, battery> batteries;
//? Get paths to needed files and check for valid values on first run
if (batteries.empty() and has_battery) {
try {
if (fs::exists("/sys/class/power_supply")) {
for (const auto& d : fs::directory_iterator("/sys/class/power_supply")) {
//? Only consider online power supplies of type Battery or UPS
//? see kernel docs for details on the file structure and contents
//? https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-power
battery new_bat;
fs::path bat_dir;
try {
if (not d.is_directory()
or not fs::exists(d.path() / "type")
or not fs::exists(d.path() / "present")
or stoi(readfile(d.path() / "present")) != 1)
continue;
string dev_type = readfile(d.path() / "type");
if (is_in(dev_type, "Battery", "UPS")) {
bat_dir = d.path();
new_bat.base_dir = d.path();
new_bat.device_type = dev_type;
}
} catch (...) {
//? skip power supplies not conforming to the kernel standard
continue;
}
if (fs::exists(bat_dir / "energy_now")) new_bat.energy_now = bat_dir / "energy_now";
else if (fs::exists(bat_dir / "charge_now")) new_bat.charge_now = bat_dir / "charge_now";
else new_bat.use_energy_or_charge = false;
if (fs::exists(bat_dir / "energy_full")) new_bat.energy_full = bat_dir / "energy_full";
else if (fs::exists(bat_dir / "charge_full")) new_bat.charge_full = bat_dir / "charge_full";
else new_bat.use_energy_or_charge = false;
if (not new_bat.use_energy_or_charge and not fs::exists(bat_dir / "capacity")) {
continue;
}
if (fs::exists(bat_dir / "power_now")) {
new_bat.power_now = bat_dir / "power_now";
}
else if ((fs::exists(bat_dir / "current_now")) and (fs::exists(bat_dir / "current_now"))) {
new_bat.current_now = bat_dir / "current_now";
new_bat.voltage_now = bat_dir / "voltage_now";
}
else {
new_bat.use_power = false;
}
if (fs::exists(bat_dir / "AC0/online")) new_bat.online = bat_dir / "AC0/online";
else if (fs::exists(bat_dir / "AC/online")) new_bat.online = bat_dir / "AC/online";
batteries[bat_dir.filename()] = new_bat;
Config::available_batteries.push_back(bat_dir.filename());
}
}
}
catch (...) {
batteries.clear();
}
if (batteries.empty()) {
has_battery = false;
return {0, 0, 0, ""};
}
}
auto& battery_sel = Config::getS("selected_battery");
if (auto_sel.empty()) {
for (auto& [name, bat] : batteries) {
if (bat.device_type == "Battery") {
auto_sel = name;
break;
}
}
if (auto_sel.empty()) auto_sel = batteries.begin()->first;
}
auto& b = (battery_sel != "Auto" and batteries.contains(battery_sel) ? batteries.at(battery_sel) : batteries.at(auto_sel));
int percent = -1;
long seconds = -1;
float watts = -1;
//? Try to get battery percentage
if (percent < 0) {
try {
percent = stoll(readfile(b.base_dir / "capacity", "-1"));
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
if (b.use_energy_or_charge and percent < 0) {
try {
percent = round(100.0 * stoll(readfile(b.energy_now, "-1")) / stoll(readfile(b.energy_full, "1")));
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
if (b.use_energy_or_charge and percent < 0) {
try {
percent = round(100.0 * stoll(readfile(b.charge_now, "-1")) / stoll(readfile(b.charge_full, "1")));
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
if (percent < 0) {
has_battery = false;
return {0, 0, 0, ""};
}
//? Get charging/discharging status
string status = str_to_lower(readfile(b.base_dir / "status", "unknown"));
if (status == "unknown" and not b.online.empty()) {
const auto online = readfile(b.online, "0");
if (online == "1" and percent < 100) status = "charging";
else if (online == "1") status = "full";
else status = "discharging";
}
//? Get seconds to empty
if (not is_in(status, "charging", "full")) {
if (b.use_energy_or_charge ) {
if (not b.power_now.empty()) {
try {
seconds = round((double)stoll(readfile(b.energy_now, "0")) / stoll(readfile(b.power_now, "1")) * 3600);
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
else if (not b.current_now.empty()) {
try {
seconds = round((double)stoll(readfile(b.charge_now, "0")) / (double)stoll(readfile(b.current_now, "1")) * 3600);
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
}
if (seconds < 0 and fs::exists(b.base_dir / "time_to_empty")) {
try {
seconds = stoll(readfile(b.base_dir / "time_to_empty", "0")) * 60;
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
}
//? Get power draw
if (b.use_power) {
if (not b.power_now.empty()) {
try {
watts = (float)stoll(readfile(b.power_now, "-1")) / 1000000.0;
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
else if (not b.voltage_now.empty() and not b.current_now.empty()) {
try {
watts = (float)stoll(readfile(b.current_now, "-1")) / 1000000.0 * stoll(readfile(b.voltage_now, "1")) / 1000000.0;
}
catch (const std::invalid_argument&) { }
catch (const std::out_of_range&) { }
}
}
return {percent, watts, seconds, status};
}
auto collect(bool no_update) -> cpu_info& {
if (Runner::stopping or (no_update and not current_cpu.cpu_percent.at("total").empty())) return current_cpu;
auto& cpu = current_cpu;
if (Config::getB("show_cpu_freq"))
cpuHz = get_cpuHz();
if (getloadavg(cpu.load_avg.data(), cpu.load_avg.size()) < 0) {
Logger::error("failed to get load averages");
}
ifstream cread;
try {
//? Get cpu total times for all cores from /proc/stat
string cpu_name;
cread.open(Shared::procPath / "stat");
int i = 0;
int target = Shared::coreCount;
for (; i <= target or (cread.good() and cread.peek() == 'c'); i++) {
//? Make sure to add zero value for missing core values if at end of file
if ((not cread.good() or cread.peek() != 'c') and i <= target) {
if (i == 0) throw std::runtime_error("Failed to parse /proc/stat");
else {
//? Fix container sizes if new cores are detected
while (cmp_less(cpu.core_percent.size(), i)) {
core_old_totals.push_back(0);
core_old_idles.push_back(0);
cpu.core_percent.emplace_back();
}
cpu.core_percent.at(i-1).push_back(0);
}
}
else {
if (i == 0) cread.ignore(SSmax, ' ');
else {
cread >> cpu_name;
int cpuNum = std::stoi(cpu_name.substr(3));
if (cpuNum >= target - 1) target = cpuNum + (cread.peek() == 'c' ? 2 : 1);
//? Add zero value for core if core number is missing from /proc/stat
while (i - 1 < cpuNum) {
//? Fix container sizes if new cores are detected
while (cmp_less(cpu.core_percent.size(), i)) {
core_old_totals.push_back(0);
core_old_idles.push_back(0);
cpu.core_percent.emplace_back();
}
cpu.core_percent[i-1].push_back(0);
if (cpu.core_percent.at(i-1).size() > 40) cpu.core_percent.at(i-1).pop_front();
i++;
}
}
//? Expected on kernel 2.6.3> : 0=user, 1=nice, 2=system, 3=idle, 4=iowait, 5=irq, 6=softirq, 7=steal, 8=guest, 9=guest_nice
vector<long long> times;
long long total_sum = 0;
for (uint64_t val; cread >> val; total_sum += val) {
times.push_back(val);
}
cread.clear();
if (times.size() < 4) throw std::runtime_error("Malformed /proc/stat");
//? Subtract fields 8-9 and any future unknown fields
const long long totals = max(0ll, total_sum - (times.size() > 8 ? std::accumulate(times.begin() + 8, times.end(), 0ll) : 0));
//? Add iowait field if present
const long long idles = max(0ll, times.at(3) + (times.size() > 4 ? times.at(4) : 0));
//? Calculate values for totals from first line of stat
if (i == 0) {
const long long calc_totals = max(1ll, totals - cpu_old.at("totals"));
const long long calc_idles = max(1ll, idles - cpu_old.at("idles"));
cpu_old.at("totals") = totals;
cpu_old.at("idles") = idles;
//? Total usage of cpu
cpu.cpu_percent.at("total").push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));
//? Reduce size if there are more values than needed for graph
while (cmp_greater(cpu.cpu_percent.at("total").size(), width * 2)) cpu.cpu_percent.at("total").pop_front();
//? Populate cpu.cpu_percent with all fields from stat
for (int ii = 0; const auto& val : times) {
cpu.cpu_percent.at(time_names.at(ii)).push_back(clamp((long long)round((double)(val - cpu_old.at(time_names.at(ii))) * 100 / calc_totals), 0ll, 100ll));
cpu_old.at(time_names.at(ii)) = val;
//? Reduce size if there are more values than needed for graph
while (cmp_greater(cpu.cpu_percent.at(time_names.at(ii)).size(), width * 2)) cpu.cpu_percent.at(time_names.at(ii)).pop_front();
if (++ii == 10) break;
}
continue;
}
//? Calculate cpu total for each core
else {
//? Fix container sizes if new cores are detected
while (cmp_less(cpu.core_percent.size(), i)) {
core_old_totals.push_back(0);
core_old_idles.push_back(0);
cpu.core_percent.emplace_back();
}
const long long calc_totals = max(0ll, totals - core_old_totals.at(i-1));
const long long calc_idles = max(0ll, idles - core_old_idles.at(i-1));
core_old_totals.at(i-1) = totals;
core_old_idles.at(i-1) = idles;
cpu.core_percent.at(i-1).push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));
}
}
//? Reduce size if there are more values than needed for graph
if (cpu.core_percent.at(i-1).size() > 40) cpu.core_percent.at(i-1).pop_front();
}
//? Notify main thread to redraw screen if we found more cores than previously detected
if (cmp_greater(cpu.core_percent.size(), Shared::coreCount)) {
Logger::debug("Changing CPU max corecount from " + to_string(Shared::coreCount) + " to " + to_string(cpu.core_percent.size()) + ".");
Runner::coreNum_reset = true;
Shared::coreCount = cpu.core_percent.size();
while (cmp_less(current_cpu.temp.size(), cpu.core_percent.size() + 1)) current_cpu.temp.push_back({0});
}
}
catch (const std::exception& e) {
Logger::debug("Cpu::collect() : " + string{e.what()});
if (cread.bad()) throw std::runtime_error("Failed to read /proc/stat");
else throw std::runtime_error("Cpu::collect() : " + string{e.what()});
}
if (Config::getB("check_temp") and got_sensors)
update_sensors();
if (Config::getB("show_battery") and has_battery)
current_bat = get_battery();
return cpu;
}
}
#ifdef GPU_SUPPORT
namespace Gpu {
//? NVIDIA
namespace Nvml {
bool init() {
if (initialized) return false;
//? Dynamic loading & linking
//? Try possible library names for libnvidia-ml.so
const array libNvAlts = {
"libnvidia-ml.so",
"libnvidia-ml.so.1",
};
for (const auto& l : libNvAlts) {
nvml_dl_handle = dlopen(l, RTLD_LAZY);
if (nvml_dl_handle != nullptr) {
break;
}
}
if (!nvml_dl_handle) {
Logger::info("Failed to load libnvidia-ml.so, NVIDIA GPUs will not be detected: "s + dlerror());
return false;
}
auto load_nvml_sym = [&](const char sym_name[]) {
auto sym = dlsym(nvml_dl_handle, sym_name);
auto err = dlerror();
if (err != nullptr) {
Logger::error(string("NVML: Couldn't find function ") + sym_name + ": " + err);
return (void*)nullptr;
} else return sym;
};
#define LOAD_SYM(NAME) if ((NAME = (decltype(NAME))load_nvml_sym(#NAME)) == nullptr) return false
LOAD_SYM(nvmlErrorString);
LOAD_SYM(nvmlInit);
LOAD_SYM(nvmlShutdown);
LOAD_SYM(nvmlDeviceGetCount);
LOAD_SYM(nvmlDeviceGetHandleByIndex);
LOAD_SYM(nvmlDeviceGetName);
LOAD_SYM(nvmlDeviceGetPowerManagementLimit);
LOAD_SYM(nvmlDeviceGetTemperatureThreshold);
LOAD_SYM(nvmlDeviceGetUtilizationRates);
LOAD_SYM(nvmlDeviceGetClockInfo);
LOAD_SYM(nvmlDeviceGetPowerUsage);
LOAD_SYM(nvmlDeviceGetPowerState);
LOAD_SYM(nvmlDeviceGetTemperature);
LOAD_SYM(nvmlDeviceGetMemoryInfo);
LOAD_SYM(nvmlDeviceGetPcieThroughput);
#undef LOAD_SYM
//? Function calls
nvmlReturn_t result = nvmlInit();
if (result != NVML_SUCCESS) {
Logger::debug(std::string("Failed to initialize NVML, NVIDIA GPUs will not be detected: ") + nvmlErrorString(result));
return false;
}
//? Device count
result = nvmlDeviceGetCount(&device_count);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get device count: ") + nvmlErrorString(result));
return false;
}
if (device_count > 0) {
devices.resize(device_count);
gpus.resize(device_count);
gpu_names.resize(device_count);
initialized = true;
//? Check supported functions & get maximums
Nvml::collect<1>(gpus.data());
return true;
} else {initialized = true; shutdown(); return false;}
}
bool shutdown() {
if (!initialized) return false;
nvmlReturn_t result = nvmlShutdown();
if (NVML_SUCCESS == result) {
initialized = false;
dlclose(nvml_dl_handle);
} else Logger::warning(std::string("Failed to shutdown NVML: ") + nvmlErrorString(result));
return !initialized;
}
template <bool is_init> // collect<1> is called in Nvml::init(), and populates gpus.supported_functions
bool collect(gpu_info* gpus_slice) { // raw pointer to vector data, size == device_count
if (!initialized) return false;
nvmlReturn_t result;
std::thread pcie_tx_thread, pcie_rx_thread;
// DebugTimer nvTotalTimer("Nvidia Total");
for (unsigned int i = 0; i < device_count; ++i) {
if constexpr(is_init) {
//? Device Handle
result = nvmlDeviceGetHandleByIndex(i, devices.data() + i);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get device handle: ") + nvmlErrorString(result));
gpus[i].supported_functions = {false, false, false, false, false, false, false, false};
continue;
}
//? Device name
char name[NVML_DEVICE_NAME_BUFFER_SIZE];
result = nvmlDeviceGetName(devices[i], name, NVML_DEVICE_NAME_BUFFER_SIZE);
if (result != NVML_SUCCESS)
Logger::warning(std::string("NVML: Failed to get device name: ") + nvmlErrorString(result));
else {
gpu_names[i] = string(name);
for (const auto& brand : {"NVIDIA", "Nvidia", "(R)", "(TM)"}) {
gpu_names[i] = s_replace(gpu_names[i], brand, "");
}
gpu_names[i] = trim(gpu_names[i]);
}
//? Power usage
unsigned int max_power;
result = nvmlDeviceGetPowerManagementLimit(devices[i], &max_power);
if (result != NVML_SUCCESS)
Logger::warning(std::string("NVML: Failed to get maximum GPU power draw, defaulting to 225W: ") + nvmlErrorString(result));
else {
gpus[i].pwr_max_usage = max_power; // RSMI reports power in microWatts
gpu_pwr_total_max += max_power;
}
//? Get temp_max
unsigned int temp_max;
result = nvmlDeviceGetTemperatureThreshold(devices[i], NVML_TEMPERATURE_THRESHOLD_SHUTDOWN, &temp_max);
if (result != NVML_SUCCESS)
Logger::warning(std::string("NVML: Failed to get maximum GPU temperature, defaulting to 110°C: ") + nvmlErrorString(result));
else gpus[i].temp_max = (long long)temp_max;
}
//? PCIe link speeds, the data collection takes >=20ms each call so they run on separate threads
if (gpus_slice[i].supported_functions.pcie_txrx and (Config::getB("nvml_measure_pcie_speeds") or is_init)) {
pcie_tx_thread = std::thread([gpus_slice, i]() {
unsigned int tx;
nvmlReturn_t result = nvmlDeviceGetPcieThroughput(devices[i], NVML_PCIE_UTIL_TX_BYTES, &tx);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get PCIe TX throughput: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.pcie_txrx = false;
} else gpus_slice[i].pcie_tx = (long long)tx;
});
pcie_rx_thread = std::thread([gpus_slice, i]() {
unsigned int rx;
nvmlReturn_t result = nvmlDeviceGetPcieThroughput(devices[i], NVML_PCIE_UTIL_RX_BYTES, &rx);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get PCIe RX throughput: ") + nvmlErrorString(result));
} else gpus_slice[i].pcie_rx = (long long)rx;
});
}
// DebugTimer nvTimer("Nv utilization");
//? GPU & memory utilization
if (gpus_slice[i].supported_functions.gpu_utilization) {
nvmlUtilization_t utilization;
result = nvmlDeviceGetUtilizationRates(devices[i], &utilization);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get GPU utilization: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.gpu_utilization = false;
if constexpr(is_init) gpus_slice[i].supported_functions.mem_utilization = false;
} else {
gpus_slice[i].gpu_percent.at("gpu-totals").push_back((long long)utilization.gpu);
gpus_slice[i].mem_utilization_percent.push_back((long long)utilization.memory);
}
}
// nvTimer.stop_rename_reset("Nv clock");
//? Clock speeds
if (gpus_slice[i].supported_functions.gpu_clock) {
unsigned int gpu_clock;
result = nvmlDeviceGetClockInfo(devices[i], NVML_CLOCK_GRAPHICS, &gpu_clock);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get GPU clock speed: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
} else gpus_slice[i].gpu_clock_speed = (long long)gpu_clock;
}
if (gpus_slice[i].supported_functions.mem_clock) {
unsigned int mem_clock;
result = nvmlDeviceGetClockInfo(devices[i], NVML_CLOCK_MEM, &mem_clock);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get VRAM clock speed: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
} else gpus_slice[i].mem_clock_speed = (long long)mem_clock;
}
// nvTimer.stop_rename_reset("Nv power");
//? Power usage & state
if (gpus_slice[i].supported_functions.pwr_usage) {
unsigned int power;
result = nvmlDeviceGetPowerUsage(devices[i], &power);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get GPU power usage: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.pwr_usage = false;
} else {
gpus_slice[i].pwr_usage = (long long)power;
gpus_slice[i].gpu_percent.at("gpu-pwr-totals").push_back(clamp((long long)round((double)gpus_slice[i].pwr_usage * 100.0 / (double)gpus_slice[i].pwr_max_usage), 0ll, 100ll));
}
}
if (gpus_slice[i].supported_functions.pwr_state) {
nvmlPstates_t pState;
result = nvmlDeviceGetPowerState(devices[i], &pState);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get GPU power state: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.pwr_state = false;
} else gpus_slice[i].pwr_state = static_cast<int>(pState);
}
// nvTimer.stop_rename_reset("Nv temp");
//? GPU temperature
if (gpus_slice[i].supported_functions.temp_info) {
if (Config::getB("check_temp")) {
unsigned int temp;
nvmlReturn_t result = nvmlDeviceGetTemperature(devices[i], NVML_TEMPERATURE_GPU, &temp);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get GPU temperature: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.temp_info = false;
} else gpus_slice[i].temp.push_back((long long)temp);
}
}
// nvTimer.stop_rename_reset("Nv mem");
//? Memory info
if (gpus_slice[i].supported_functions.mem_total) {
nvmlMemory_t memory;
result = nvmlDeviceGetMemoryInfo(devices[i], &memory);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get VRAM info: ") + nvmlErrorString(result));
if constexpr(is_init) gpus_slice[i].supported_functions.mem_total = false;
if constexpr(is_init) gpus_slice[i].supported_functions.mem_used = false;
} else {
gpus_slice[i].mem_total = memory.total;
gpus_slice[i].mem_used = memory.used;
//gpu.mem_free = memory.free;
auto used_percent = (long long)round((double)memory.used * 100.0 / (double)memory.total);
gpus_slice[i].gpu_percent.at("gpu-vram-totals").push_back(used_percent);
}
}
//? TODO: Processes using GPU
/*unsigned int proc_info_len;
nvmlProcessInfo_t* proc_info = 0;
result = nvmlDeviceGetComputeRunningProcesses_v3(device, &proc_info_len, proc_info);
if (result != NVML_SUCCESS) {
Logger::warning(std::string("NVML: Failed to get compute processes: ") + nvmlErrorString(result));
} else {
for (unsigned int i = 0; i < proc_info_len; ++i)
gpus_slice[i].graphics_processes.push_back({proc_info[i].pid, proc_info[i].usedGpuMemory});
}*/
// nvTimer.stop_rename_reset("Nv pcie thread join");
//? Join PCIE TX/RX threads
if constexpr(is_init) { // there doesn't seem to be a better way to do this, but this should be fine considering it's just 2 lines
pcie_tx_thread.join();
pcie_rx_thread.join();
} else if (gpus_slice[i].supported_functions.pcie_txrx and Config::getB("nvml_measure_pcie_speeds")) {
pcie_tx_thread.join();
pcie_rx_thread.join();
}
}
return true;
}
}
//? AMD
namespace Rsmi {
bool init() {
if (initialized) return false;
//? Dynamic loading & linking
#if !defined(RSMI_STATIC)
//? Try possible library paths and names for librocm_smi64.so
const array libRocAlts = {
"/opt/rocm/lib/librocm_smi64.so",
"librocm_smi64.so",
"librocm_smi64.so.5", // fedora
"librocm_smi64.so.1.0", // debian
"librocm_smi64.so.6"
};
for (const auto& l : libRocAlts) {
rsmi_dl_handle = dlopen(l, RTLD_LAZY);
if (rsmi_dl_handle != nullptr) {
break;
}
}
if (!rsmi_dl_handle) {
Logger::info("Failed to load librocm_smi64.so, AMD GPUs will not be detected: "s + dlerror());
return false;
}
auto load_rsmi_sym = [&](const char sym_name[]) {
auto sym = dlsym(rsmi_dl_handle, sym_name);
auto err = dlerror();
if (err != nullptr) {
Logger::error(string("ROCm SMI: Couldn't find function ") + sym_name + ": " + err);
return (void*)nullptr;
} else return sym;
};
#define LOAD_SYM(NAME) if ((NAME = (decltype(NAME))load_rsmi_sym(#NAME)) == nullptr) return false
LOAD_SYM(rsmi_init);
LOAD_SYM(rsmi_shut_down);
LOAD_SYM(rsmi_version_get);
LOAD_SYM(rsmi_num_monitor_devices);
LOAD_SYM(rsmi_dev_name_get);
LOAD_SYM(rsmi_dev_power_cap_get);
LOAD_SYM(rsmi_dev_temp_metric_get);
LOAD_SYM(rsmi_dev_busy_percent_get);
LOAD_SYM(rsmi_dev_memory_busy_percent_get);
LOAD_SYM(rsmi_dev_power_ave_get);
LOAD_SYM(rsmi_dev_memory_total_get);
LOAD_SYM(rsmi_dev_memory_usage_get);
LOAD_SYM(rsmi_dev_pci_throughput_get);
#undef LOAD_SYM
#endif
//? Function calls
rsmi_status_t result = rsmi_init(0);
if (result != RSMI_STATUS_SUCCESS) {
Logger::debug("Failed to initialize ROCm SMI, AMD GPUs will not be detected");
return false;
}
#if !defined(RSMI_STATIC)
//? Check version
rsmi_version_t version;
result = rsmi_version_get(&version);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get version");
return false;
} else if (version.major == 5) {
if ((rsmi_dev_gpu_clk_freq_get_v5 = (decltype(rsmi_dev_gpu_clk_freq_get_v5))load_rsmi_sym("rsmi_dev_gpu_clk_freq_get")) == nullptr)
return false;
// In the release tarballs of rocm 6.0.0 and 6.0.2 the version queried with rsmi_version_get is 7.0.0.0
} else if (version.major == 6 || version.major == 7) {
if ((rsmi_dev_gpu_clk_freq_get_v6 = (decltype(rsmi_dev_gpu_clk_freq_get_v6))load_rsmi_sym("rsmi_dev_gpu_clk_freq_get")) == nullptr)
return false;
} else {
Logger::warning("ROCm SMI: Dynamic loading only supported for version 5 and 6");
return false;
}
version_major = version.major;
#endif
//? Device count
result = rsmi_num_monitor_devices(&device_count);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to fetch number of devices");
return false;
}
if (device_count > 0) {
gpus.resize(gpus.size() + device_count);
gpu_names.resize(gpus.size() + device_count);
initialized = true;
//? Check supported functions & get maximums
Rsmi::collect<1>(gpus.data() + Nvml::device_count);
return true;
} else {initialized = true; shutdown(); return false;}
}
bool shutdown() {
if (!initialized) return false;
if (rsmi_shut_down() == RSMI_STATUS_SUCCESS) {
initialized = false;
#if !defined(RSMI_STATIC)
dlclose(rsmi_dl_handle);
#endif
} else Logger::warning("Failed to shutdown ROCm SMI");
return true;
}
template <bool is_init>
bool collect(gpu_info* gpus_slice) { // raw pointer to vector data, size == device_count, offset by Nvml::device_count elements
if (!initialized) return false;
rsmi_status_t result;
for (uint32_t i = 0; i < device_count; ++i) {
if constexpr(is_init) {
//? Device name
char name[NVML_DEVICE_NAME_BUFFER_SIZE]; // ROCm SMI does not provide a constant for this as far as I can tell, this should be good enough
result = rsmi_dev_name_get(i, name, NVML_DEVICE_NAME_BUFFER_SIZE);
if (result != RSMI_STATUS_SUCCESS)
Logger::warning("ROCm SMI: Failed to get device name");
else gpu_names[Nvml::device_count + i] = string(name);
//? Power usage
uint64_t max_power;
result = rsmi_dev_power_cap_get(i, 0, &max_power);
if (result != RSMI_STATUS_SUCCESS)
Logger::warning("ROCm SMI: Failed to get maximum GPU power draw, defaulting to 225W");
else {
gpus_slice[i].pwr_max_usage = (long long)(max_power/1000); // RSMI reports power in microWatts
gpu_pwr_total_max += gpus_slice[i].pwr_max_usage;
}
//? Get temp_max
int64_t temp_max;
result = rsmi_dev_temp_metric_get(i, RSMI_TEMP_TYPE_EDGE, RSMI_TEMP_MAX, &temp_max);
if (result != RSMI_STATUS_SUCCESS)
Logger::warning("ROCm SMI: Failed to get maximum GPU temperature, defaulting to 110°C");
else gpus_slice[i].temp_max = (long long)temp_max;
}
//? GPU utilization
if (gpus_slice[i].supported_functions.gpu_utilization) {
uint32_t utilization;
result = rsmi_dev_busy_percent_get(i, &utilization);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get GPU utilization");
if constexpr(is_init) gpus_slice[i].supported_functions.gpu_utilization = false;
} else gpus_slice[i].gpu_percent.at("gpu-totals").push_back((long long)utilization);
}
//? Memory utilization
if (gpus_slice[i].supported_functions.mem_utilization) {
uint32_t utilization;
result = rsmi_dev_memory_busy_percent_get(i, &utilization);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get VRAM utilization");
if constexpr(is_init) gpus_slice[i].supported_functions.mem_utilization = false;
} else gpus_slice[i].mem_utilization_percent.push_back((long long)utilization);
}
#if !defined(RSMI_STATIC)
//? Clock speeds
if (gpus_slice[i].supported_functions.gpu_clock) {
if (version_major == 5) {
rsmi_frequencies_t_v5 frequencies;
result = rsmi_dev_gpu_clk_freq_get_v5(i, RSMI_CLK_TYPE_SYS, &frequencies);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get GPU clock speed: ");
if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
} else gpus_slice[i].gpu_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
}
else if (version_major == 6 || version_major == 7) {
rsmi_frequencies_t_v6 frequencies;
result = rsmi_dev_gpu_clk_freq_get_v6(i, RSMI_CLK_TYPE_SYS, &frequencies);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get GPU clock speed: ");
if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
} else gpus_slice[i].gpu_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
}
}
if (gpus_slice[i].supported_functions.mem_clock) {
if (version_major == 5) {
rsmi_frequencies_t_v5 frequencies;
result = rsmi_dev_gpu_clk_freq_get_v5(i, RSMI_CLK_TYPE_MEM, &frequencies);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get VRAM clock speed: ");
if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
} else gpus_slice[i].mem_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
}
else if (version_major == 6 || version_major == 7) {
rsmi_frequencies_t_v6 frequencies;
result = rsmi_dev_gpu_clk_freq_get_v6(i, RSMI_CLK_TYPE_MEM, &frequencies);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get VRAM clock speed: ");
if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
} else gpus_slice[i].mem_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
}
}
#else
//? Clock speeds
if (gpus_slice[i].supported_functions.gpu_clock) {
rsmi_frequencies_t frequencies;
result = rsmi_dev_gpu_clk_freq_get(i, RSMI_CLK_TYPE_SYS, &frequencies);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get GPU clock speed: ");
if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
} else gpus_slice[i].gpu_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
}
if (gpus_slice[i].supported_functions.mem_clock) {
rsmi_frequencies_t frequencies;
result = rsmi_dev_gpu_clk_freq_get(i, RSMI_CLK_TYPE_MEM, &frequencies);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get VRAM clock speed: ");
if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
} else gpus_slice[i].mem_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
}
#endif
//? Power usage & state
if (gpus_slice[i].supported_functions.pwr_usage) {
uint64_t power;
result = rsmi_dev_power_ave_get(i, 0, &power);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get GPU power usage");
if constexpr(is_init) gpus_slice[i].supported_functions.pwr_usage = false;
} else gpus_slice[i].gpu_percent.at("gpu-pwr-totals").push_back(clamp((long long)round((double)gpus_slice[i].pwr_usage * 100.0 / (double)gpus_slice[i].pwr_max_usage), 0ll, 100ll));
if constexpr(is_init) gpus_slice[i].supported_functions.pwr_state = false;
}
//? GPU temperature
if (gpus_slice[i].supported_functions.temp_info) {
if (Config::getB("check_temp") or is_init) {
int64_t temp;
result = rsmi_dev_temp_metric_get(i, RSMI_TEMP_TYPE_EDGE, RSMI_TEMP_CURRENT, &temp);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get GPU temperature");
if constexpr(is_init) gpus_slice[i].supported_functions.temp_info = false;
} else gpus_slice[i].temp.push_back((long long)temp/1000);
}
}
//? Memory info
if (gpus_slice[i].supported_functions.mem_total) {
uint64_t total;
result = rsmi_dev_memory_total_get(i, RSMI_MEM_TYPE_VRAM, &total);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get total VRAM");
if constexpr(is_init) gpus_slice[i].supported_functions.mem_total = false;
} else gpus_slice[i].mem_total = total;
}
if (gpus_slice[i].supported_functions.mem_used) {
uint64_t used;
result = rsmi_dev_memory_usage_get(i, RSMI_MEM_TYPE_VRAM, &used);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get VRAM usage");
if constexpr(is_init) gpus_slice[i].supported_functions.mem_used = false;
} else {
gpus_slice[i].mem_used = used;
if (gpus_slice[i].supported_functions.mem_total)
gpus_slice[i].gpu_percent.at("gpu-vram-totals").push_back((long long)round((double)used * 100.0 / (double)gpus_slice[i].mem_total));
}
}
//? PCIe link speeds
if (gpus_slice[i].supported_functions.pcie_txrx) {
uint64_t tx, rx;
result = rsmi_dev_pci_throughput_get(i, &tx, &rx, 0);
if (result != RSMI_STATUS_SUCCESS) {
Logger::warning("ROCm SMI: Failed to get PCIe throughput");
if constexpr(is_init) gpus_slice[i].supported_functions.pcie_txrx = false;
} else {
gpus_slice[i].pcie_tx = (long long)tx;
gpus_slice[i].pcie_rx = (long long)rx;
}
}
}
return true;
}
}
// TODO: Intel
//? Collect data from GPU-specific libraries
auto collect(bool no_update) -> vector<gpu_info>& {
if (Runner::stopping or (no_update and not gpus.empty())) return gpus;
// DebugTimer gpu_timer("GPU Total");
//* Collect data
Nvml::collect<0>(gpus.data()); // raw pointer to vector data, size == Nvml::device_count
Rsmi::collect<0>(gpus.data() + Nvml::device_count); // size = Rsmi::device_count
//* Calculate average usage
long long avg = 0;
long long mem_usage_total = 0;
long long mem_total = 0;
long long pwr_total = 0;
for (auto& gpu : gpus) {
if (gpu.supported_functions.gpu_utilization)
avg += gpu.gpu_percent.at("gpu-totals").back();
if (gpu.supported_functions.mem_used)
mem_usage_total += gpu.mem_used;
if (gpu.supported_functions.mem_total)
mem_total += gpu.mem_total;
if (gpu.supported_functions.pwr_usage)
mem_total += gpu.pwr_usage;
//* Trim vectors if there are more values than needed for graphs
if (width != 0) {
//? GPU & memory utilization
while (cmp_greater(gpu.gpu_percent.at("gpu-totals").size(), width * 2)) gpu.gpu_percent.at("gpu-totals").pop_front();
while (cmp_greater(gpu.mem_utilization_percent.size(), width)) gpu.mem_utilization_percent.pop_front();
//? Power usage
while (cmp_greater(gpu.gpu_percent.at("gpu-pwr-totals").size(), width)) gpu.gpu_percent.at("gpu-pwr-totals").pop_front();
//? Temperature
while (cmp_greater(gpu.temp.size(), 18)) gpu.temp.pop_front();
//? Memory usage
while (cmp_greater(gpu.gpu_percent.at("gpu-vram-totals").size(), width/2)) gpu.gpu_percent.at("gpu-vram-totals").pop_front();
}
}
shared_gpu_percent.at("gpu-average").push_back(avg / gpus.size());
if (mem_total != 0)
shared_gpu_percent.at("gpu-vram-total").push_back(mem_usage_total / mem_total);
if (gpu_pwr_total_max != 0)
shared_gpu_percent.at("gpu-pwr-total").push_back(pwr_total / gpu_pwr_total_max);
if (width != 0) {
while (cmp_greater(shared_gpu_percent.at("gpu-average").size(), width * 2)) shared_gpu_percent.at("gpu-average").pop_front();
while (cmp_greater(shared_gpu_percent.at("gpu-pwr-total").size(), width * 2)) shared_gpu_percent.at("gpu-pwr-total").pop_front();
while (cmp_greater(shared_gpu_percent.at("gpu-vram-total").size(), width * 2)) shared_gpu_percent.at("gpu-vram-total").pop_front();
}
return gpus;
}
}
#endif
namespace Mem {
bool has_swap{};
vector<string> fstab;
fs::file_time_type fstab_time;
int disk_ios{};
vector<string> last_found;
//?* Find the filepath to the specified ZFS object's stat file
fs::path get_zfs_stat_file(const string& device_name, size_t dataset_name_start, bool zfs_hide_datasets);
//?* Collect total ZFS pool io stats
bool zfs_collect_pool_total_stats(struct disk_info &disk);
mem_info current_mem {};
uint64_t get_totalMem() {
ifstream meminfo(Shared::procPath / "meminfo");
int64_t totalMem;
if (meminfo.good()) {
meminfo.ignore(SSmax, ':');
meminfo >> totalMem;
totalMem <<= 10;
}
if (not meminfo.good() or totalMem == 0)
throw std::runtime_error("Could not get total memory size from /proc/meminfo");
return totalMem;
}
auto collect(bool no_update) -> mem_info& {
if (Runner::stopping or (no_update and not current_mem.percent.at("used").empty())) return current_mem;
auto show_swap = Config::getB("show_swap");
auto swap_disk = Config::getB("swap_disk");
auto show_disks = Config::getB("show_disks");
auto zfs_arc_cached = Config::getB("zfs_arc_cached");
auto totalMem = get_totalMem();
auto& mem = current_mem;
mem.stats.at("swap_total") = 0;
//? Read ZFS ARC info from /proc/spl/kstat/zfs/arcstats
uint64_t arc_size = 0, arc_min_size = 0;
if (zfs_arc_cached) {
ifstream arcstats(Shared::procPath / "spl/kstat/zfs/arcstats");
if (arcstats.good()) {
for (string label; arcstats >> label;) {
if (label == "c_min") {
arcstats >> arc_min_size >> arc_min_size; // double read skips type column
}
else if (label == "size") {
arcstats >> arc_size >> arc_size;
break;
}
}
}
arcstats.close();
}
//? Read memory info from /proc/meminfo
ifstream meminfo(Shared::procPath / "meminfo");
if (meminfo.good()) {
bool got_avail = false;
for (string label; meminfo.peek() != 'D' and meminfo >> label;) {
if (label == "MemFree:") {
meminfo >> mem.stats.at("free");
mem.stats.at("free") <<= 10;
}
else if (label == "MemAvailable:") {
meminfo >> mem.stats.at("available");
mem.stats.at("available") <<= 10;
got_avail = true;
}
else if (label == "Cached:") {
meminfo >> mem.stats.at("cached");
mem.stats.at("cached") <<= 10;
if (not show_swap and not swap_disk) break;
}
else if (label == "SwapTotal:") {
meminfo >> mem.stats.at("swap_total");
mem.stats.at("swap_total") <<= 10;
}
else if (label == "SwapFree:") {
meminfo >> mem.stats.at("swap_free");
mem.stats.at("swap_free") <<= 10;
break;
}
meminfo.ignore(SSmax, '\n');
}
if (not got_avail) mem.stats.at("available") = mem.stats.at("free") + mem.stats.at("cached");
if (zfs_arc_cached) {
mem.stats.at("cached") += arc_size;
// The ARC will not shrink below arc_min_size, so that memory is not available
if (arc_size > arc_min_size)
mem.stats.at("available") += arc_size - arc_min_size;
}
mem.stats.at("used") = totalMem - (mem.stats.at("available") <= totalMem ? mem.stats.at("available") : mem.stats.at("free"));
if (mem.stats.at("swap_total") > 0) mem.stats.at("swap_used") = mem.stats.at("swap_total") - mem.stats.at("swap_free");
}
else
throw std::runtime_error("Failed to read /proc/meminfo");
meminfo.close();
//? Calculate percentages
for (const auto& name : mem_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / totalMem));
while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front();
}
if (show_swap and mem.stats.at("swap_total") > 0) {
for (const auto& name : swap_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / mem.stats.at("swap_total")));
while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front();
}
has_swap = true;
}
else
has_swap = false;
//? Get disks stats
if (show_disks) {
static vector<string> ignore_list;
double uptime = system_uptime();
auto free_priv = Config::getB("disk_free_priv");
try {
auto& disks_filter = Config::getS("disks_filter");
bool filter_exclude = false;
auto use_fstab = Config::getB("use_fstab");
auto only_physical = Config::getB("only_physical");
auto zfs_hide_datasets = Config::getB("zfs_hide_datasets");
auto& disks = mem.disks;
static std::unordered_map<string, future<pair<disk_info, int>>> disks_stats_promises;
ifstream diskread;
vector<string> filter;
if (not disks_filter.empty()) {
filter = ssplit(disks_filter);
if (filter.at(0).starts_with("exclude=")) {
filter_exclude = true;
filter.at(0) = filter.at(0).substr(8);
}
}
//? Get list of "real" filesystems from /proc/filesystems
vector<string> fstypes;
if (only_physical and not use_fstab) {
fstypes = {"zfs", "wslfs", "drvfs"};
diskread.open(Shared::procPath / "filesystems");
if (diskread.good()) {
for (string fstype; diskread >> fstype;) {
if (not is_in(fstype, "nodev", "squashfs", "nullfs"))
fstypes.push_back(fstype);
diskread.ignore(SSmax, '\n');
}
}
else
throw std::runtime_error("Failed to read /proc/filesystems");
diskread.close();
}
//? Get disk list to use from fstab if enabled
if (use_fstab and fs::last_write_time("/etc/fstab") != fstab_time) {
fstab.clear();
fstab_time = fs::last_write_time("/etc/fstab");
diskread.open("/etc/fstab");
if (diskread.good()) {
for (string instr; diskread >> instr;) {
if (not instr.starts_with('#')) {
diskread >> instr;
#ifdef SNAPPED
if (instr == "/") fstab.push_back("/mnt");
else if (not is_in(instr, "none", "swap")) fstab.push_back(instr);
#else
if (not is_in(instr, "none", "swap")) fstab.push_back(instr);
#endif
}
diskread.ignore(SSmax, '\n');
}
}
else
throw std::runtime_error("Failed to read /etc/fstab");
diskread.close();
}
//? Get mounts from /etc/mtab or /proc/self/mounts
diskread.open((fs::exists("/etc/mtab") ? fs::path("/etc/mtab") : Shared::procPath / "self/mounts"));
if (diskread.good()) {
vector<string> found;
found.reserve(last_found.size());
string dev, mountpoint, fstype;
while (not diskread.eof()) {
std::error_code ec;
diskread >> dev >> mountpoint >> fstype;
diskread.ignore(SSmax, '\n');
if (v_contains(ignore_list, mountpoint) or v_contains(found, mountpoint)) continue;
//? Match filter if not empty
if (not filter.empty()) {
bool match = v_contains(filter, mountpoint);
if ((filter_exclude and match) or (not filter_exclude and not match))
continue;
}
//? Skip ZFS datasets if zfs_hide_datasets option is enabled
size_t zfs_dataset_name_start = 0;
if (fstype == "zfs" && (zfs_dataset_name_start = dev.find('/')) != std::string::npos && zfs_hide_datasets) continue;
if ((not use_fstab and not only_physical)
or (use_fstab and v_contains(fstab, mountpoint))
or (not use_fstab and only_physical and v_contains(fstypes, fstype))) {
found.push_back(mountpoint);
if (not v_contains(last_found, mountpoint)) redraw = true;
//? Save mountpoint, name, fstype, dev path and path to /sys/block stat file
if (not disks.contains(mountpoint)) {
disks[mountpoint] = disk_info{fs::canonical(dev, ec), fs::path(mountpoint).filename(), fstype};
if (disks.at(mountpoint).dev.empty()) disks.at(mountpoint).dev = dev;
#ifdef SNAPPED
if (mountpoint == "/mnt") disks.at(mountpoint).name = "root";
#endif
if (disks.at(mountpoint).name.empty()) disks.at(mountpoint).name = (mountpoint == "/" ? "root" : mountpoint);
string devname = disks.at(mountpoint).dev.filename();
int c = 0;
while (devname.size() >= 2) {
if (fs::exists("/sys/block/" + devname + "/stat", ec) and access(string("/sys/block/" + devname + "/stat").c_str(), R_OK) == 0) {
if (c > 0 and fs::exists("/sys/block/" + devname + '/' + disks.at(mountpoint).dev.filename().string() + "/stat", ec))
disks.at(mountpoint).stat = "/sys/block/" + devname + '/' + disks.at(mountpoint).dev.filename().string() + "/stat";
else
disks.at(mountpoint).stat = "/sys/block/" + devname + "/stat";
break;
//? Set ZFS stat filepath
} else if (fstype == "zfs") {
disks.at(mountpoint).stat = get_zfs_stat_file(dev, zfs_dataset_name_start, zfs_hide_datasets);
if (disks.at(mountpoint).stat.empty()) {
Logger::debug("Failed to get ZFS stat file for device " + dev);
}
break;
}
devname.resize(devname.size() - 1);
c++;
}
}
//? If zfs_hide_datasets option was switched, refresh stat filepath
if (fstype == "zfs" && ((zfs_hide_datasets && !is_directory(disks.at(mountpoint).stat))
|| (!zfs_hide_datasets && is_directory(disks.at(mountpoint).stat)))) {
disks.at(mountpoint).stat = get_zfs_stat_file(dev, zfs_dataset_name_start, zfs_hide_datasets);
if (disks.at(mountpoint).stat.empty()) {
Logger::debug("Failed to get ZFS stat file for device " + dev);
}
}
}
}
//? Remove disks no longer mounted or filtered out
if (swap_disk and has_swap) found.push_back("swap");
for (auto it = disks.begin(); it != disks.end();) {
if (not v_contains(found, it->first))
it = disks.erase(it);
else
it++;
}
if (found.size() != last_found.size()) redraw = true;
last_found = std::move(found);
}
else
throw std::runtime_error("Failed to get mounts from /etc/mtab and /proc/self/mounts");
diskread.close();
//? Get disk/partition stats
for (auto it = disks.begin(); it != disks.end(); ) {
auto &[mountpoint, disk] = *it;
if (v_contains(ignore_list, mountpoint) or disk.name == "swap") {
it = disks.erase(it);
continue;
}
if(auto promises_it = disks_stats_promises.find(mountpoint); promises_it != disks_stats_promises.end()){
auto& promise = promises_it->second;
if(promise.valid() &&
promise.wait_for(0s) == std::future_status::timeout) {
++it;
continue;
}
auto promise_res = promises_it->second.get();
if(promise_res.second != -1){
ignore_list.push_back(mountpoint);
Logger::warning("Failed to get disk/partition stats for mount \""+ mountpoint + "\" with statvfs error code: " + to_string(promise_res.second) + ". Ignoring...");
it = disks.erase(it);
continue;
}
auto &updated_stats = promise_res.first;
disk.total = updated_stats.total;
disk.free = updated_stats.free;
disk.used = updated_stats.used;
disk.used_percent = updated_stats.used_percent;
disk.free_percent = updated_stats.free_percent;
}
disks_stats_promises[mountpoint] = async(std::launch::async, [mountpoint, &free_priv]() -> pair<disk_info, int> {
struct statvfs vfs;
disk_info disk;
if (statvfs(mountpoint.c_str(), &vfs) < 0) {
return pair{disk, errno};
}
disk.total = vfs.f_blocks * vfs.f_frsize;
disk.free = (free_priv ? vfs.f_bfree : vfs.f_bavail) * vfs.f_frsize;
disk.used = disk.total - disk.free;
disk.used_percent = round((double)disk.used * 100 / disk.total);
disk.free_percent = 100 - disk.used_percent;
return pair{disk, -1};
});
++it;
}
//? Setup disks order in UI and add swap if enabled
mem.disks_order.clear();
#ifdef SNAPPED
if (disks.contains("/mnt")) mem.disks_order.push_back("/mnt");
#else
if (disks.contains("/")) mem.disks_order.push_back("/");
#endif
if (swap_disk and has_swap) {
mem.disks_order.push_back("swap");
if (not disks.contains("swap")) disks["swap"] = {"", "swap", "swap"};
disks.at("swap").total = mem.stats.at("swap_total");
disks.at("swap").used = mem.stats.at("swap_used");
disks.at("swap").free = mem.stats.at("swap_free");
disks.at("swap").used_percent = mem.percent.at("swap_used").back();
disks.at("swap").free_percent = mem.percent.at("swap_free").back();
}
for (const auto& name : last_found)
#ifdef SNAPPED
if (not is_in(name, "/mnt", "swap")) mem.disks_order.push_back(name);
#else
if (not is_in(name, "/", "swap")) mem.disks_order.push_back(name);
#endif
//? Get disks IO
int64_t sectors_read, sectors_write, io_ticks, io_ticks_temp;
disk_ios = 0;
for (auto& [ignored, disk] : disks) {
if (disk.stat.empty() or access(disk.stat.c_str(), R_OK) != 0) continue;
if (disk.fstype == "zfs" && zfs_hide_datasets && zfs_collect_pool_total_stats(disk)) {
disk_ios++;
continue;
}
diskread.open(disk.stat);
if (diskread.good()) {
disk_ios++;
//? ZFS Pool Support
if (disk.fstype == "zfs") {
// skip first three lines
for (int i = 0; i < 3; i++) diskread.ignore(numeric_limits<streamsize>::max(), '\n');
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> io_ticks;
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> sectors_write; // nbytes written
if (disk.io_write.empty())
disk.io_write.push_back(0);
else
disk.io_write.push_back(max((int64_t)0, (sectors_write - disk.old_io.at(1))));
disk.old_io.at(1) = sectors_write;
while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front();
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> io_ticks_temp;
io_ticks += io_ticks_temp;
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> sectors_read; // nbytes read
if (disk.io_read.empty())
disk.io_read.push_back(0);
else
disk.io_read.push_back(max((int64_t)0, (sectors_read - disk.old_io.at(0))));
disk.old_io.at(0) = sectors_read;
while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front();
if (disk.io_activity.empty())
disk.io_activity.push_back(0);
else
disk.io_activity.push_back(max((int64_t)0, (io_ticks - disk.old_io.at(2))));
disk.old_io.at(2) = io_ticks;
while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front();
} else {
for (int i = 0; i < 2; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
diskread >> sectors_read;
if (disk.io_read.empty())
disk.io_read.push_back(0);
else
disk.io_read.push_back(max((int64_t)0, (sectors_read - disk.old_io.at(0)) * 512));
disk.old_io.at(0) = sectors_read;
while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front();
for (int i = 0; i < 3; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
diskread >> sectors_write;
if (disk.io_write.empty())
disk.io_write.push_back(0);
else
disk.io_write.push_back(max((int64_t)0, (sectors_write - disk.old_io.at(1)) * 512));
disk.old_io.at(1) = sectors_write;
while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front();
for (int i = 0; i < 2; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
diskread >> io_ticks;
if (disk.io_activity.empty())
disk.io_activity.push_back(0);
else
disk.io_activity.push_back(clamp((long)round((double)(io_ticks - disk.old_io.at(2)) / (uptime - old_uptime) / 10), 0l, 100l));
disk.old_io.at(2) = io_ticks;
while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front();
}
} else {
Logger::debug("Error in Mem::collect() : when opening " + string{disk.stat});
}
diskread.close();
}
old_uptime = uptime;
}
catch (const std::exception& e) {
Logger::warning("Error in Mem::collect() : " + string{e.what()});
}
}
return mem;
}
fs::path get_zfs_stat_file(const string& device_name, size_t dataset_name_start, bool zfs_hide_datasets) {
fs::path zfs_pool_stat_path;
if (zfs_hide_datasets) {
zfs_pool_stat_path = Shared::procPath / "spl/kstat/zfs" / device_name;
if (access(zfs_pool_stat_path.c_str(), R_OK) == 0) {
return zfs_pool_stat_path;
} else {
Logger::debug("Can't access folder: " + zfs_pool_stat_path.string());
return "";
}
}
ifstream filestream;
string filename;
string name_compare;
if (dataset_name_start != std::string::npos) { // device is a dataset
zfs_pool_stat_path = Shared::procPath / "spl/kstat/zfs" / device_name.substr(0, dataset_name_start);
} else { // device is a pool
zfs_pool_stat_path = Shared::procPath / "spl/kstat/zfs" / device_name;
}
// looking through all files that start with 'objset' to find the one containing `device_name` object stats
try {
for (const auto& file: fs::directory_iterator(zfs_pool_stat_path)) {
filename = file.path().filename();
if (filename.starts_with("objset")) {
filestream.open(file.path());
if (filestream.good()) {
// skip first two lines
for (int i = 0; i < 2; i++) filestream.ignore(numeric_limits<streamsize>::max(), '\n');
// skip characters until '7' is reached, indicating data type 7, next value will be object name
filestream.ignore(numeric_limits<streamsize>::max(), '7');
filestream >> name_compare;
if (name_compare == device_name) {
filestream.close();
if (access(file.path().c_str(), R_OK) == 0) {
return file.path();
} else {
Logger::debug("Can't access file: " + file.path().string());
return "";
}
}
}
filestream.close();
}
}
}
catch (fs::filesystem_error& e) {}
Logger::debug("Could not read directory: " + zfs_pool_stat_path.string());
return "";
}
bool zfs_collect_pool_total_stats(struct disk_info &disk) {
ifstream diskread;
int64_t bytes_read;
int64_t bytes_write;
int64_t io_ticks;
int64_t bytes_read_total{};
int64_t bytes_write_total{};
int64_t io_ticks_total{};
int64_t objects_read{};
// looking through all files that start with 'objset'
for (const auto& file: fs::directory_iterator(disk.stat)) {
if ((file.path().filename()).string().starts_with("objset")) {
diskread.open(file.path());
if (diskread.good()) {
try {
// skip first three lines
for (int i = 0; i < 3; i++) diskread.ignore(numeric_limits<streamsize>::max(), '\n');
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> io_ticks;
io_ticks_total += io_ticks;
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> bytes_write;
bytes_write_total += bytes_write;
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> io_ticks;
io_ticks_total += io_ticks;
// skip characters until '4' is reached, indicating data type 4, next value will be out target
diskread.ignore(numeric_limits<streamsize>::max(), '4');
diskread >> bytes_read;
bytes_read_total += bytes_read;
} catch (const std::exception& e) {
continue;
}
// increment read objects counter if no errors were encountered
objects_read++;
} else {
Logger::debug("Could not read file: " + file.path().string());
}
diskread.close();
}
}
// if for some reason no objects were read
if (objects_read == 0) return false;
if (disk.io_write.empty())
disk.io_write.push_back(0);
else
disk.io_write.push_back(max((int64_t)0, (bytes_write_total - disk.old_io.at(1))));
disk.old_io.at(1) = bytes_write_total;
while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front();
if (disk.io_read.empty())
disk.io_read.push_back(0);
else
disk.io_read.push_back(max((int64_t)0, (bytes_read_total - disk.old_io.at(0))));
disk.old_io.at(0) = bytes_read_total;
while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front();
if (disk.io_activity.empty())
disk.io_activity.push_back(0);
else
disk.io_activity.push_back(max((int64_t)0, (io_ticks_total - disk.old_io.at(2))));
disk.old_io.at(2) = io_ticks_total;
while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front();
return true;
}
}
namespace Net {
std::unordered_map<string, net_info> current_net;
net_info empty_net = {};
vector<string> interfaces;
string selected_iface;
int errors{};
std::unordered_map<string, uint64_t> graph_max = { {"download", {}}, {"upload", {}} };
std::unordered_map<string, array<int, 2>> max_count = { {"download", {}}, {"upload", {}} };
bool rescale{true};
uint64_t timestamp{};
auto collect(bool no_update) -> net_info& {
if (Runner::stopping) return empty_net;
auto& net = current_net;
auto& config_iface = Config::getS("net_iface");
auto net_sync = Config::getB("net_sync");
auto net_auto = Config::getB("net_auto");
auto new_timestamp = time_ms();
if (not no_update and errors < 3) {
//? Get interface list using getifaddrs() wrapper
IfAddrsPtr if_addrs {};
if (if_addrs.get_status() != 0) {
errors++;
Logger::error("Net::collect() -> getifaddrs() failed with id " + to_string(if_addrs.get_status()));
redraw = true;
return empty_net;
}
int family = 0;
static_assert(INET6_ADDRSTRLEN >= INET_ADDRSTRLEN); // 46 >= 16, compile-time assurance.
enum { IPBUFFER_MAXSIZE = INET6_ADDRSTRLEN }; // manually using the known biggest value, guarded by the above static_assert
char ip[IPBUFFER_MAXSIZE];
interfaces.clear();
string ipv4, ipv6;
//? Iteration over all items in getifaddrs() list
for (auto* ifa = if_addrs.get(); ifa != nullptr; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == nullptr) continue;
family = ifa->ifa_addr->sa_family;
const auto& iface = ifa->ifa_name;
//? Update available interfaces vector and get status of interface
if (not v_contains(interfaces, iface)) {
interfaces.push_back(iface);
net[iface].connected = (ifa->ifa_flags & IFF_RUNNING);
// An interface can have more than one IP of the same family associated with it,
// but we pick only the first one to show in the NET box.
// Note: Interfaces without any IPv4 and IPv6 set are still valid and monitorable!
net[iface].ipv4.clear();
net[iface].ipv6.clear();
}
//? Get IPv4 address
if (family == AF_INET) {
if (net[iface].ipv4.empty()) {
if (nullptr != inet_ntop(family, &(reinterpret_cast<struct sockaddr_in*>(ifa->ifa_addr)->sin_addr), ip, IPBUFFER_MAXSIZE)) {
net[iface].ipv4 = ip;
} else {
int errsv = errno;
Logger::error("Net::collect() -> Failed to convert IPv4 to string for iface " + string(iface) + ", errno: " + strerror(errsv));
}
}
}
//? Get IPv6 address
else if (family == AF_INET6) {
if (net[iface].ipv6.empty()) {
if (nullptr != inet_ntop(family, &(reinterpret_cast<struct sockaddr_in6*>(ifa->ifa_addr)->sin6_addr), ip, IPBUFFER_MAXSIZE)) {
net[iface].ipv6 = ip;
} else {
int errsv = errno;
Logger::error("Net::collect() -> Failed to convert IPv6 to string for iface " + string(iface) + ", errno: " + strerror(errsv));
}
}
} //else, ignoring family==AF_PACKET (see man 3 getifaddrs) which is the first one in the `for` loop.
}
//? Get total received and transmitted bytes + device address if no ip was found
for (const auto& iface : interfaces) {
if (net.at(iface).ipv4.empty() and net.at(iface).ipv6.empty())
net.at(iface).ipv4 = readfile("/sys/class/net/" + iface + "/address");
for (const string dir : {"download", "upload"}) {
const fs::path sys_file = "/sys/class/net/" + iface + "/statistics/" + (dir == "download" ? "rx_bytes" : "tx_bytes");
auto& saved_stat = net.at(iface).stat.at(dir);
auto& bandwidth = net.at(iface).bandwidth.at(dir);
uint64_t val{};
try { val = (uint64_t)stoull(readfile(sys_file, "0")); }
catch (const std::invalid_argument&) {}
catch (const std::out_of_range&) {}
//? Update speed, total and top values
if (val < saved_stat.last) {
saved_stat.rollover += saved_stat.last;
saved_stat.last = 0;
}
if (cmp_greater((unsigned long long)saved_stat.rollover + (unsigned long long)val, numeric_limits<uint64_t>::max())) {
saved_stat.rollover = 0;
saved_stat.last = 0;
}
saved_stat.speed = round((double)(val - saved_stat.last) / ((double)(new_timestamp - timestamp) / 1000));
if (saved_stat.speed > saved_stat.top) saved_stat.top = saved_stat.speed;
if (saved_stat.offset > val + saved_stat.rollover) saved_stat.offset = 0;
saved_stat.total = (val + saved_stat.rollover) - saved_stat.offset;
saved_stat.last = val;
//? Add values to graph
bandwidth.push_back(saved_stat.speed);
while (cmp_greater(bandwidth.size(), width * 2)) bandwidth.pop_front();
//? Set counters for auto scaling
if (net_auto and selected_iface == iface) {
if (net_sync and saved_stat.speed < net.at(iface).stat.at(dir == "download" ? "upload" : "download").speed) continue;
if (saved_stat.speed > graph_max[dir]) {
++max_count[dir][0];
if (max_count[dir][1] > 0) --max_count[dir][1];
}
else if (graph_max[dir] > 10 << 10 and saved_stat.speed < graph_max[dir] / 10) {
++max_count[dir][1];
if (max_count[dir][0] > 0) --max_count[dir][0];
}
}
}
}
//? Clean up net map if needed
if (net.size() > interfaces.size()) {
for (auto it = net.begin(); it != net.end();) {
if (not v_contains(interfaces, it->first))
it = net.erase(it);
else
it++;
}
}
timestamp = new_timestamp;
}
//? Return empty net_info struct if no interfaces was found
if (net.empty())
return empty_net;
//? Find an interface to display if selected isn't set or valid
if (selected_iface.empty() or not v_contains(interfaces, selected_iface)) {
max_count["download"][0] = max_count["download"][1] = max_count["upload"][0] = max_count["upload"][1] = 0;
redraw = true;
if (net_auto) rescale = true;
if (not config_iface.empty() and v_contains(interfaces, config_iface)) selected_iface = config_iface;
else {
//? Sort interfaces by total upload + download bytes
auto sorted_interfaces = interfaces;
rng::sort(sorted_interfaces, [&](const auto& a, const auto& b){
return cmp_greater(net.at(a).stat["download"].total + net.at(a).stat["upload"].total,
net.at(b).stat["download"].total + net.at(b).stat["upload"].total);
});
selected_iface.clear();
//? Try to set to a connected interface
for (const auto& iface : sorted_interfaces) {
if (net.at(iface).connected) selected_iface = iface;
break;
}
//? If no interface is connected set to first available
if (selected_iface.empty() and not sorted_interfaces.empty()) selected_iface = sorted_interfaces.at(0);
else if (sorted_interfaces.empty()) return empty_net;
}
}
//? Calculate max scale for graphs if needed
if (net_auto) {
bool sync = false;
for (const auto& dir: {"download", "upload"}) {
for (const auto& sel : {0, 1}) {
if (rescale or max_count[dir][sel] >= 5) {
const long long avg_speed = (net[selected_iface].bandwidth[dir].size() > 5
? std::accumulate(net.at(selected_iface).bandwidth.at(dir).rbegin(), net.at(selected_iface).bandwidth.at(dir).rbegin() + 5, 0ll) / 5
: net[selected_iface].stat[dir].speed);
graph_max[dir] = max(uint64_t(avg_speed * (sel == 0 ? 1.3 : 3.0)), (uint64_t)10 << 10);
max_count[dir][0] = max_count[dir][1] = 0;
redraw = true;
if (net_sync) sync = true;
break;
}
}
//? Sync download/upload graphs if enabled
if (sync) {
const auto other = (string(dir) == "upload" ? "download" : "upload");
graph_max[other] = graph_max[dir];
max_count[other][0] = max_count[other][1] = 0;
break;
}
}
}
rescale = false;
return net.at(selected_iface);
}
}
namespace Proc {
vector<proc_info> current_procs;
std::unordered_map<string, string> uid_user;
string current_sort;
string current_filter;
bool current_rev{};
fs::file_time_type passwd_time;
uint64_t cputimes;
int collapse = -1, expand = -1;
uint64_t old_cputimes{};
atomic<int> numpids{};
int filter_found{};
detail_container detailed;
constexpr size_t KTHREADD = 2;
static std::unordered_set<size_t> kernels_procs = {KTHREADD};
//* Get detailed info for selected process
void _collect_details(const size_t pid, const uint64_t uptime, vector<proc_info>& procs) {
fs::path pid_path = Shared::procPath / std::to_string(pid);
if (pid != detailed.last_pid) {
detailed = {};
detailed.last_pid = pid;
detailed.skip_smaps = not Config::getB("proc_info_smaps");
}
//? Copy proc_info for process from proc vector
auto p_info = rng::find(procs, pid, &proc_info::pid);
detailed.entry = *p_info;
//? Update cpu percent deque for process cpu graph
if (not Config::getB("proc_per_core")) detailed.entry.cpu_p *= Shared::coreCount;
detailed.cpu_percent.push_back(clamp((long long)round(detailed.entry.cpu_p), 0ll, 100ll));
while (cmp_greater(detailed.cpu_percent.size(), width)) detailed.cpu_percent.pop_front();
//? Process runtime
detailed.elapsed = sec_to_dhms(uptime - (detailed.entry.cpu_s / Shared::clkTck));
if (detailed.elapsed.size() > 8) detailed.elapsed.resize(detailed.elapsed.size() - 3);
//? Get parent process name
if (detailed.parent.empty()) {
auto p_entry = rng::find(procs, detailed.entry.ppid, &proc_info::pid);
if (p_entry != procs.end()) detailed.parent = p_entry->name;
}
//? Expand process status from single char to explanative string
detailed.status = (proc_states.contains(detailed.entry.state)) ? proc_states.at(detailed.entry.state) : "Unknown";
ifstream d_read;
string short_str;
//? Try to get RSS mem from proc/[pid]/smaps
detailed.memory.clear();
if (not detailed.skip_smaps and fs::exists(pid_path / "smaps")) {
d_read.open(pid_path / "smaps");
uint64_t rss = 0;
try {
while (d_read.good()) {
d_read.ignore(SSmax, 'R');
if (d_read.peek() == 's') {
d_read.ignore(SSmax, ':');
getline(d_read, short_str, 'k');
rss += stoull(short_str);
}
}
if (rss == detailed.entry.mem >> 10)
detailed.skip_smaps = true;
else {
detailed.mem_bytes.push_back(rss << 10);
detailed.memory = floating_humanizer(rss, false, 1);
}
}
catch (const std::invalid_argument&) {}
catch (const std::out_of_range&) {}
d_read.close();
}
if (detailed.memory.empty()) {
detailed.mem_bytes.push_back(detailed.entry.mem);
detailed.memory = floating_humanizer(detailed.entry.mem);
}
if (detailed.first_mem == -1 or detailed.first_mem < detailed.mem_bytes.back() / 2 or detailed.first_mem > detailed.mem_bytes.back() * 4) {
detailed.first_mem = min((uint64_t)detailed.mem_bytes.back() * 2, Mem::get_totalMem());
redraw = true;
}
while (cmp_greater(detailed.mem_bytes.size(), width)) detailed.mem_bytes.pop_front();
//? Get bytes read and written from proc/[pid]/io
if (fs::exists(pid_path / "io")) {
d_read.open(pid_path / "io");
try {
string name;
while (d_read.good()) {
getline(d_read, name, ':');
if (name.ends_with("read_bytes")) {
getline(d_read, short_str);
detailed.io_read = floating_humanizer(stoull(short_str));
}
else if (name.ends_with("write_bytes")) {
getline(d_read, short_str);
detailed.io_write = floating_humanizer(stoull(short_str));
break;
}
else
d_read.ignore(SSmax, '\n');
}
}
catch (const std::invalid_argument&) {}
catch (const std::out_of_range&) {}
d_read.close();
}
}
//* Collects and sorts process information from /proc
auto collect(bool no_update) -> vector<proc_info>& {
if (Runner::stopping) return current_procs;
const auto& sorting = Config::getS("proc_sorting");
auto reverse = Config::getB("proc_reversed");
const auto& filter = Config::getS("proc_filter");
auto per_core = Config::getB("proc_per_core");
auto should_filter_kernel = Config::getB("proc_filter_kernel");
auto tree = Config::getB("proc_tree");
auto show_detailed = Config::getB("show_detailed");
const size_t detailed_pid = Config::getI("detailed_pid");
bool should_filter = current_filter != filter;
if (should_filter) current_filter = filter;
bool sorted_change = (sorting != current_sort or reverse != current_rev or should_filter);
if (sorted_change) {
current_sort = sorting;
current_rev = reverse;
}
ifstream pread;
string long_string;
string short_str;
static vector<size_t> found;
const double uptime = system_uptime();
const int cmult = (per_core) ? Shared::coreCount : 1;
bool got_detailed = false;
static size_t proc_clear_count{};
//* Use pids from last update if only changing filter, sorting or tree options
if (no_update and not current_procs.empty()) {
if (show_detailed and detailed_pid != detailed.last_pid) _collect_details(detailed_pid, round(uptime), current_procs);
}
//* ---------------------------------------------Collection start----------------------------------------------
else {
should_filter = true;
found.clear();
//? First make sure kernel proc cache is cleared.
if (should_filter_kernel and ++proc_clear_count >= 256) {
//? Clearing the cache is used in the event of a pid wrap around.
//? In that event processes that acquire old kernel pids would also be filtered out so we need to manually clean the cache every now and then.
kernels_procs.clear();
kernels_procs.emplace(KTHREADD);
proc_clear_count = 0;
}
auto totalMem = Mem::get_totalMem();
int totalMem_len = to_string(totalMem >> 10).size();
//? Update uid_user map if /etc/passwd changed since last run
if (not Shared::passwd_path.empty() and fs::last_write_time(Shared::passwd_path) != passwd_time) {
string r_uid, r_user;
passwd_time = fs::last_write_time(Shared::passwd_path);
uid_user.clear();
pread.open(Shared::passwd_path);
if (pread.good()) {
while (pread.good()) {
getline(pread, r_user, ':');
pread.ignore(SSmax, ':');
getline(pread, r_uid, ':');
if (uid_user.contains(r_uid)) break;
uid_user[r_uid] = r_user;
pread.ignore(SSmax, '\n');
}
}
else {
Shared::passwd_path.clear();
}
pread.close();
}
//? Get cpu total times from /proc/stat
cputimes = 0;
pread.open(Shared::procPath / "stat");
if (pread.good()) {
pread.ignore(SSmax, ' ');
for (uint64_t times; pread >> times; cputimes += times);
}
else throw std::runtime_error("Failure to read /proc/stat");
pread.close();
//? Iterate over all pids in /proc
for (const auto& d: fs::directory_iterator(Shared::procPath)) {
if (Runner::stopping)
return current_procs;
if (pread.is_open()) pread.close();
const string pid_str = d.path().filename();
if (not isdigit(pid_str[0])) continue;
const size_t pid = stoul(pid_str);
if (should_filter_kernel and kernels_procs.contains(pid)) {
continue;
}
found.push_back(pid);
//? Check if pid already exists in current_procs
auto find_old = rng::find(current_procs, pid, &proc_info::pid);
bool no_cache{};
if (find_old == current_procs.end()) {
current_procs.push_back({pid});
find_old = current_procs.end() - 1;
no_cache = true;
}
auto& new_proc = *find_old;
//? Get program name, command and username
if (no_cache) {
pread.open(d.path() / "comm");
if (not pread.good()) continue;
getline(pread, new_proc.name);
pread.close();
//? Check for whitespace characters in name and set offset to get correct fields from stat file
new_proc.name_offset = rng::count(new_proc.name, ' ');
pread.open(d.path() / "cmdline");
if (not pread.good()) continue;
long_string.clear();
while(getline(pread, long_string, '\0')) {
new_proc.cmd += long_string + ' ';
if (new_proc.cmd.size() > 1000) {
new_proc.cmd.resize(1000);
break;
}
}
pread.close();
if (not new_proc.cmd.empty()) new_proc.cmd.pop_back();
pread.open(d.path() / "status");
if (not pread.good()) continue;
string uid;
string line;
while (pread.good()) {
getline(pread, line, ':');
if (line == "Uid") {
pread.ignore();
getline(pread, uid, '\t');
break;
} else {
pread.ignore(SSmax, '\n');
}
}
pread.close();
if (uid_user.contains(uid)) {
new_proc.user = uid_user.at(uid);
}
else {
#if !(defined(STATIC_BUILD) && defined(__GLIBC__))
try {
struct passwd* udet;
udet = getpwuid(stoi(uid));
if (udet != nullptr and udet->pw_name != nullptr) {
new_proc.user = string(udet->pw_name);
}
else {
new_proc.user = uid;
}
}
catch (...) { new_proc.user = uid; }
#else
new_proc.user = uid;
#endif
}
}
//? Parse /proc/[pid]/stat
pread.open(d.path() / "stat");
if (not pread.good()) continue;
const auto& offset = new_proc.name_offset;
short_str.clear();
int x = 0, next_x = 3;
uint64_t cpu_t = 0;
try {
for (;;) {
while (pread.good() and ++x < next_x + offset) pread.ignore(SSmax, ' ');
if (not pread.good()) break;
else getline(pread, short_str, ' ');
switch (x-offset) {
case 3: //? Process state
new_proc.state = short_str.at(0);
if (new_proc.ppid != 0) next_x = 14;
continue;
case 4: //? Parent pid
new_proc.ppid = stoull(short_str);
next_x = 14;
continue;
case 14: //? Process utime
cpu_t = stoull(short_str);
continue;
case 15: //? Process stime
cpu_t += stoull(short_str);
next_x = 19;
continue;
case 19: //? Nice value
new_proc.p_nice = stoll(short_str);
continue;
case 20: //? Number of threads
new_proc.threads = stoull(short_str);
if (new_proc.cpu_s == 0) {
next_x = 22;
new_proc.cpu_t = cpu_t;
}
else
next_x = 24;
continue;
case 22: //? Get cpu seconds if missing
new_proc.cpu_s = stoull(short_str);
next_x = 24;
continue;
case 24: //? RSS memory (can be inaccurate, but parsing smaps increases total cpu usage by ~20x)
if (cmp_greater(short_str.size(), totalMem_len))
new_proc.mem = totalMem;
else
new_proc.mem = stoull(short_str) * Shared::pageSize;
}
break;
}
}
catch (const std::invalid_argument&) { continue; }
catch (const std::out_of_range&) { continue; }
pread.close();
if (should_filter_kernel and new_proc.ppid == KTHREADD) {
kernels_procs.emplace(new_proc.pid);
found.pop_back();
}
if (x-offset < 24) continue;
//? Get RSS memory from /proc/[pid]/statm if value from /proc/[pid]/stat looks wrong
if (new_proc.mem >= totalMem) {
pread.open(d.path() / "statm");
if (not pread.good()) continue;
pread.ignore(SSmax, ' ');
pread >> new_proc.mem;
new_proc.mem *= Shared::pageSize;
pread.close();
}
//? Process cpu usage since last update
new_proc.cpu_p = clamp(round(cmult * 1000 * (cpu_t - new_proc.cpu_t) / max((uint64_t)1, cputimes - old_cputimes)) / 10.0, 0.0, 100.0 * Shared::coreCount);
//? Process cumulative cpu usage since process start
new_proc.cpu_c = (double)cpu_t / max(1.0, (uptime * Shared::clkTck) - new_proc.cpu_s);
//? Update cached value with latest cpu times
new_proc.cpu_t = cpu_t;
if (show_detailed and not got_detailed and new_proc.pid == detailed_pid) {
got_detailed = true;
}
}
//? Clear dead processes from current_procs and remove kernel processes if enabled
auto eraser = rng::remove_if(current_procs, [&](const auto& element){ return not v_contains(found, element.pid); });
current_procs.erase(eraser.begin(), eraser.end());
//? Update the details info box for process if active
if (show_detailed and got_detailed) {
_collect_details(detailed_pid, round(uptime), current_procs);
}
else if (show_detailed and not got_detailed and detailed.status != "Dead") {
detailed.status = "Dead";
redraw = true;
}
old_cputimes = cputimes;
}
//* ---------------------------------------------Collection done-----------------------------------------------
//* Match filter if defined
if (should_filter) {
filter_found = 0;
for (auto& p : current_procs) {
if (not tree and not filter.empty()) {
if (not s_contains_ic(to_string(p.pid), filter)
and not s_contains_ic(p.name, filter)
and not s_contains_ic(p.cmd, filter)
and not s_contains_ic(p.user, filter)) {
p.filtered = true;
filter_found++;
}
else {
p.filtered = false;
}
}
else {
p.filtered = false;
}
}
}
//* Sort processes
if (sorted_change or not no_update) {
proc_sorter(current_procs, sorting, reverse, tree);
}
//* Generate tree view if enabled
if (tree and (not no_update or should_filter or sorted_change)) {
bool locate_selection = false;
if (auto find_pid = (collapse != -1 ? collapse : expand); find_pid != -1) {
auto collapser = rng::find(current_procs, find_pid, &proc_info::pid);
if (collapser != current_procs.end()) {
if (collapse == expand) {
collapser->collapsed = not collapser->collapsed;
}
else if (collapse > -1) {
collapser->collapsed = true;
}
else if (expand > -1) {
collapser->collapsed = false;
}
if (Config::ints.at("proc_selected") > 0) locate_selection = true;
}
collapse = expand = -1;
}
if (should_filter or not filter.empty()) filter_found = 0;
vector<tree_proc> tree_procs;
tree_procs.reserve(current_procs.size());
for (auto& p : current_procs) {
if (not v_contains(found, p.ppid)) p.ppid = 0;
}
//? Stable sort to retain selected sorting among processes with the same parent
rng::stable_sort(current_procs, rng::less{}, & proc_info::ppid);
//? Start recursive iteration over processes with the lowest shared parent pids
for (auto& p : rng::equal_range(current_procs, current_procs.at(0).ppid, rng::less{}, &proc_info::ppid)) {
_tree_gen(p, current_procs, tree_procs, 0, false, filter, false, no_update, should_filter);
}
//? Recursive sort over tree structure to account for collapsed processes in the tree
int index = 0;
tree_sort(tree_procs, sorting, reverse, index, current_procs.size());
//? Add tree begin symbol to first item if childless
if (tree_procs.size() > 0 and tree_procs.front().children.empty() and tree_procs.front().entry.get().prefix.size() >= 8)
tree_procs.front().entry.get().prefix.replace(tree_procs.front().entry.get().prefix.size() - 8, 8, " ┌─ ");
//? Add tree terminator symbol to last item if childless
if (tree_procs.size() > 0 and tree_procs.back().children.empty() and tree_procs.back().entry.get().prefix.size() >= 8)
tree_procs.back().entry.get().prefix.replace(tree_procs.back().entry.get().prefix.size() - 8, 8, " └─ ");
//? Final sort based on tree index
rng::sort(current_procs, rng::less{}, & proc_info::tree_index);
//? Move current selection/view to the selected process when collapsing/expanding in the tree
if (locate_selection) {
int loc = rng::find(current_procs, Proc::selected_pid, &proc_info::pid)->tree_index;
if (Config::ints.at("proc_start") >= loc or Config::ints.at("proc_start") <= loc - Proc::select_max)
Config::ints.at("proc_start") = max(0, loc - 1);
Config::ints.at("proc_selected") = loc - Config::ints.at("proc_start") + 1;
}
}
numpids = (int)current_procs.size() - filter_found;
return current_procs;
}
}
namespace Tools {
double system_uptime() {
string upstr;
ifstream pread(Shared::procPath / "uptime");
if (pread.good()) {
try {
getline(pread, upstr, ' ');
pread.close();
return stod(upstr);
}
catch (const std::invalid_argument&) {}
catch (const std::out_of_range&) {}
}
throw std::runtime_error("Failed to get uptime from " + string{Shared::procPath} + "/uptime");
}
}