btop/src/osx/btop_collect.cpp
correabuscar f4eea3f3cf osx: replace getnameinfo with inet_ntop
this is like PR #462 for FreeBSD,
and like PR #458 for Linux.
2022-11-06 14:56:54 +01:00

1391 lines
48 KiB
C++

/* Copyright 2021 Aristocratos (jakob@qvantnet.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
indent = tab
tab-size = 4
*/
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>
#include <arpa/inet.h>
#include <libproc.h>
#include <mach/mach.h>
#include <mach/mach_host.h>
#include <mach/mach_init.h>
#include <mach/mach_types.h>
#include <mach/processor_info.h>
#include <mach/vm_statistics.h>
#include <mach/mach_time.h>
// BUGS
// If both <net/if.h> and <ifaddrs.h> are being included, <net/if.h> must be
// included before <ifaddrs.h>.
// from: https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/getifaddrs.3.html
#include <net/if.h>
#include <ifaddrs.h>
#include <net/if_dl.h>
#include <netdb.h>
#include <netinet/tcp_fsm.h>
#include <pwd.h>
#include <sys/socket.h>
#include <sys/statvfs.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <netinet/in.h> // for inet_ntop
#include <unistd.h>
#include <stdexcept>
#include <btop_config.hpp>
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include <cmath>
#include <fstream>
#include <numeric>
#include <ranges>
#include <regex>
#include <string>
#include "sensors.hpp"
#include "smc.hpp"
using std::clamp, std::string_literals::operator""s, std::cmp_equal, std::cmp_less, std::cmp_greater;
using std::ifstream, std::numeric_limits, std::streamsize, std::round, std::max, std::min;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------
namespace Cpu {
vector<long long> core_old_totals;
vector<long long> core_old_idles;
vector<string> available_fields = {"total"};
vector<string> available_sensors = {"Auto"};
cpu_info current_cpu;
fs::path freq_path = "/sys/devices/system/cpu/cpufreq/policy0/scaling_cur_freq";
bool got_sensors = false, cpu_temp_only = false;
int core_offset = 0;
//* Populate found_sensors map
bool get_sensors();
//* Get current cpu clock speed
string get_cpuHz();
//* Search /proc/cpuinfo for a cpu name
string get_cpuName();
struct Sensor {
fs::path path;
string label;
int64_t temp = 0;
int64_t high = 0;
int64_t crit = 0;
};
string cpu_sensor;
vector<string> core_sensors;
unordered_flat_map<int, int> core_mapping;
} // namespace Cpu
namespace Mem {
double old_uptime;
}
class MachProcessorInfo {
public:
processor_info_array_t info_array;
mach_msg_type_number_t info_count;
MachProcessorInfo() {}
virtual ~MachProcessorInfo() {vm_deallocate(mach_task_self(), (vm_address_t)info_array, (vm_size_t)sizeof(processor_info_array_t) * info_count);}
};
namespace Shared {
fs::path passwd_path;
uint64_t totalMem;
long pageSize, coreCount, clkTck, physicalCoreCount, arg_max;
double machTck;
int totalMem_len;
void init() {
//? Shared global variables init
coreCount = sysconf(_SC_NPROCESSORS_ONLN); // this returns all logical cores (threads)
if (coreCount < 1) {
coreCount = 1;
Logger::warning("Could not determine number of cores, defaulting to 1.");
}
size_t physicalCoreCountSize = sizeof(physicalCoreCount);
if (sysctlbyname("hw.physicalcpu", &physicalCoreCount, &physicalCoreCountSize, NULL, 0) < 0) {
Logger::error("Could not get physical core count");
}
pageSize = sysconf(_SC_PAGE_SIZE);
if (pageSize <= 0) {
pageSize = 4096;
Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
}
mach_timebase_info_data_t convf;
if (mach_timebase_info(&convf) == KERN_SUCCESS) {
machTck = convf.numer / convf.denom;
} else {
Logger::warning("Could not get mach clock tick conversion factor. Defaulting to 100, processes cpu usage might be incorrect.");
machTck = 100;
}
clkTck = sysconf(_SC_CLK_TCK);
if (clkTck <= 0) {
clkTck = 100;
Logger::warning("Could not get system clock ticks per second. Defaulting to 100, processes cpu usage might be incorrect.");
}
int64_t memsize = 0;
size_t size = sizeof(memsize);
if (sysctlbyname("hw.memsize", &memsize, &size, NULL, 0) < 0) {
Logger::warning("Could not get memory size");
}
totalMem = memsize;
//* Get maximum length of process arguments
arg_max = sysconf(_SC_ARG_MAX);
//? Init for namespace Cpu
if (not fs::exists(Cpu::freq_path) or access(Cpu::freq_path.c_str(), R_OK) == -1) Cpu::freq_path.clear();
Cpu::current_cpu.core_percent.insert(Cpu::current_cpu.core_percent.begin(), Shared::coreCount, {});
Cpu::current_cpu.temp.insert(Cpu::current_cpu.temp.begin(), Shared::coreCount + 1, {});
Cpu::core_old_totals.insert(Cpu::core_old_totals.begin(), Shared::coreCount, 0);
Cpu::core_old_idles.insert(Cpu::core_old_idles.begin(), Shared::coreCount, 0);
Cpu::collect();
for (auto &[field, vec] : Cpu::current_cpu.cpu_percent) {
if (not vec.empty() and not v_contains(Cpu::available_fields, field)) Cpu::available_fields.push_back(field);
}
Cpu::cpuName = Cpu::get_cpuName();
Cpu::got_sensors = Cpu::get_sensors();
Cpu::core_mapping = Cpu::get_core_mapping();
//? Init for namespace Mem
Mem::old_uptime = system_uptime();
Mem::collect();
}
} // namespace Shared
namespace Cpu {
string cpuName;
string cpuHz;
bool has_battery = true;
bool macM1 = false;
tuple<int, long, string> current_bat;
const array<string, 10> time_names = {"user", "nice", "system", "idle"};
unordered_flat_map<string, long long> cpu_old = {
{"totals", 0},
{"idles", 0},
{"user", 0},
{"nice", 0},
{"system", 0},
{"idle", 0}
};
string get_cpuName() {
string name;
char buffer[1024];
size_t size = sizeof(buffer);
if (sysctlbyname("machdep.cpu.brand_string", &buffer, &size, NULL, 0) < 0) {
Logger::error("Failed to get CPU name");
return name;
}
name = string(buffer);
auto name_vec = ssplit(name);
if ((s_contains(name, "Xeon"s) or v_contains(name_vec, "Duo"s)) and v_contains(name_vec, "CPU"s)) {
auto cpu_pos = v_index(name_vec, "CPU"s);
if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')'))
name = name_vec.at(cpu_pos + 1);
else
name.clear();
} else if (v_contains(name_vec, "Ryzen"s)) {
auto ryz_pos = v_index(name_vec, "Ryzen"s);
name = "Ryzen" + (ryz_pos < name_vec.size() - 1 ? ' ' + name_vec.at(ryz_pos + 1) : "") + (ryz_pos < name_vec.size() - 2 ? ' ' + name_vec.at(ryz_pos + 2) : "");
} else if (s_contains(name, "Intel"s) and v_contains(name_vec, "CPU"s)) {
auto cpu_pos = v_index(name_vec, "CPU"s);
if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')') and name_vec.at(cpu_pos + 1) != "@")
name = name_vec.at(cpu_pos + 1);
else
name.clear();
} else
name.clear();
if (name.empty() and not name_vec.empty()) {
for (const auto &n : name_vec) {
if (n == "@") break;
name += n + ' ';
}
name.pop_back();
for (const auto& replace : {"Processor", "CPU", "(R)", "(TM)", "Intel", "AMD", "Core"}) {
name = s_replace(name, replace, "");
name = s_replace(name, " ", " ");
}
name = trim(name);
}
return name;
}
bool get_sensors() {
Logger::debug("get_sensors(): show_coretemp=" + std::to_string(Config::getB("show_coretemp")) + " check_temp=" + std::to_string(Config::getB("check_temp")));
got_sensors = false;
if (Config::getB("show_coretemp") and Config::getB("check_temp")) {
ThermalSensors sensors;
if (sensors.getSensors() > 0) {
Logger::debug("M1 sensors found");
got_sensors = true;
cpu_temp_only = true;
macM1 = true;
} else {
// try SMC (intel)
Logger::debug("checking intel");
SMCConnection smcCon;
try {
long long t = smcCon.getTemp(-1); // check if we have package T
if (t > -1) {
Logger::debug("intel sensors found");
got_sensors = true;
t = smcCon.getTemp(0);
if (t == -1) {
// for some macs the core offset is 1 - check if we get a sane value with 1
if (smcCon.getTemp(1) > -1) {
Logger::debug("intel sensors with offset 1");
core_offset = 1;
}
}
} else {
Logger::debug("no intel sensors found");
got_sensors = false;
}
} catch (std::runtime_error &e) {
// ignore, we don't have temp
got_sensors = false;
}
}
}
return got_sensors;
}
void update_sensors() {
current_cpu.temp_max = 95; // we have no idea how to get the critical temp
try {
if (macM1) {
ThermalSensors sensors;
current_cpu.temp.at(0).push_back(sensors.getSensors());
if (current_cpu.temp.at(0).size() > 20)
current_cpu.temp.at(0).pop_front();
} else {
SMCConnection smcCon;
int threadsPerCore = Shared::coreCount / Shared::physicalCoreCount;
long long packageT = smcCon.getTemp(-1); // -1 returns package T
current_cpu.temp.at(0).push_back(packageT);
for (int core = 0; core < Shared::coreCount; core++) {
long long temp = smcCon.getTemp((core / threadsPerCore) + core_offset); // same temp for all threads of same physical core
if (cmp_less(core + 1, current_cpu.temp.size())) {
current_cpu.temp.at(core + 1).push_back(temp);
if (current_cpu.temp.at(core + 1).size() > 20)
current_cpu.temp.at(core + 1).pop_front();
}
}
}
} catch (std::runtime_error &e) {
got_sensors = false;
Logger::error("failed getting CPU temp");
}
}
string get_cpuHz() {
unsigned int freq = 1;
size_t size = sizeof(freq);
int mib[] = {CTL_HW, HW_CPU_FREQ};
if (sysctl(mib, 2, &freq, &size, NULL, 0) < 0) {
// this fails on Apple Silicon macs. Apparently you're not allowed to know
return "";
}
return std::to_string(freq / 1000.0 / 1000.0 / 1000.0).substr(0, 3);
}
auto get_core_mapping() -> unordered_flat_map<int, int> {
unordered_flat_map<int, int> core_map;
if (cpu_temp_only) return core_map;
natural_t cpu_count;
natural_t i;
MachProcessorInfo info {};
kern_return_t error;
error = host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &cpu_count, &info.info_array, &info.info_count);
if (error != KERN_SUCCESS) {
Logger::error("Failed getting CPU info");
return core_map;
}
for (i = 0; i < cpu_count; i++) {
core_map[i] = i;
}
//? If core mapping from cpuinfo was incomplete try to guess remainder, if missing completely, map 0-0 1-1 2-2 etc.
if (cmp_less(core_map.size(), Shared::coreCount)) {
if (Shared::coreCount % 2 == 0 and (long) core_map.size() == Shared::coreCount / 2) {
for (int i = 0, n = 0; i < Shared::coreCount / 2; i++) {
if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
core_map[Shared::coreCount / 2 + i] = n++;
}
} else {
core_map.clear();
for (int i = 0, n = 0; i < Shared::coreCount; i++) {
if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
core_map[i] = n++;
}
}
}
//? Apply user set custom mapping if any
const auto &custom_map = Config::getS("cpu_core_map");
if (not custom_map.empty()) {
try {
for (const auto &split : ssplit(custom_map)) {
const auto vals = ssplit(split, ':');
if (vals.size() != 2) continue;
int change_id = std::stoi(vals.at(0));
int new_id = std::stoi(vals.at(1));
if (not core_map.contains(change_id) or cmp_greater(new_id, core_sensors.size())) continue;
core_map.at(change_id) = new_id;
}
} catch (...) {
}
}
return core_map;
}
class IOPSInfo_Wrap {
CFTypeRef data;
public:
IOPSInfo_Wrap() { data = IOPSCopyPowerSourcesInfo(); }
CFTypeRef& operator()() { return data; }
~IOPSInfo_Wrap() { CFRelease(data); }
};
class IOPSList_Wrap {
CFArrayRef data;
public:
IOPSList_Wrap(CFTypeRef cft_ref) { data = IOPSCopyPowerSourcesList(cft_ref); }
CFArrayRef& operator()() { return data; }
~IOPSList_Wrap() { CFRelease(data); }
};
auto get_battery() -> tuple<int, long, string> {
if (not has_battery) return {0, 0, ""};
uint32_t percent = -1;
long seconds = -1;
string status = "discharging";
IOPSInfo_Wrap ps_info{};
if (ps_info()) {
IOPSList_Wrap one_ps_descriptor(ps_info());
if (one_ps_descriptor()) {
if (CFArrayGetCount(one_ps_descriptor())) {
CFDictionaryRef one_ps = IOPSGetPowerSourceDescription(ps_info(), CFArrayGetValueAtIndex(one_ps_descriptor(), 0));
has_battery = true;
CFNumberRef remaining = (CFNumberRef)CFDictionaryGetValue(one_ps, CFSTR(kIOPSTimeToEmptyKey));
int32_t estimatedMinutesRemaining;
if (remaining) {
CFNumberGetValue(remaining, kCFNumberSInt32Type, &estimatedMinutesRemaining);
seconds = estimatedMinutesRemaining * 60;
}
CFNumberRef charge = (CFNumberRef)CFDictionaryGetValue(one_ps, CFSTR(kIOPSCurrentCapacityKey));
if (charge) {
CFNumberGetValue(charge, kCFNumberSInt32Type, &percent);
}
CFBooleanRef charging = (CFBooleanRef)CFDictionaryGetValue(one_ps, CFSTR(kIOPSIsChargingKey));
if (charging) {
bool isCharging = CFBooleanGetValue(charging);
if (isCharging) {
status = "charging";
}
}
if (percent == 100) {
status = "full";
}
} else {
has_battery = false;
}
} else {
has_battery = false;
}
}
return {percent, seconds, status};
}
auto collect(bool no_update) -> cpu_info & {
if (Runner::stopping or (no_update and not current_cpu.cpu_percent.at("total").empty()))
return current_cpu;
auto &cpu = current_cpu;
double avg[3];
if (getloadavg(avg, sizeof(avg)) < 0) {
Logger::error("failed to get load averages");
}
cpu.load_avg = { (float)avg[0], (float)avg[1], (float)avg[2]};
natural_t cpu_count;
natural_t i;
kern_return_t error;
processor_cpu_load_info_data_t *cpu_load_info = NULL;
MachProcessorInfo info{};
error = host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &cpu_count, &info.info_array, &info.info_count);
if (error != KERN_SUCCESS) {
Logger::error("Failed getting CPU load info");
}
cpu_load_info = (processor_cpu_load_info_data_t *)info.info_array;
long long global_totals = 0;
long long global_idles = 0;
vector<long long> times_summed = {0, 0, 0, 0};
for (i = 0; i < cpu_count; i++) {
vector<long long> times;
//? 0=user, 1=nice, 2=system, 3=idle
for (int x = 0; const unsigned int c_state : {CPU_STATE_USER, CPU_STATE_NICE, CPU_STATE_SYSTEM, CPU_STATE_IDLE}) {
auto val = cpu_load_info[i].cpu_ticks[c_state];
times.push_back(val);
times_summed.at(x++) += val;
}
try {
//? All values
const long long totals = std::accumulate(times.begin(), times.end(), 0ll);
//? Idle time
const long long idles = times.at(3);
global_totals += totals;
global_idles += idles;
//? Calculate cpu total for each core
if (i > Shared::coreCount) break;
const long long calc_totals = max(0ll, totals - core_old_totals.at(i));
const long long calc_idles = max(0ll, idles - core_old_idles.at(i));
core_old_totals.at(i) = totals;
core_old_idles.at(i) = idles;
cpu.core_percent.at(i).push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));
//? Reduce size if there are more values than needed for graph
if (cpu.core_percent.at(i).size() > 40) cpu.core_percent.at(i).pop_front();
} catch (const std::exception &e) {
Logger::error("Cpu::collect() : " + (string)e.what());
throw std::runtime_error("collect() : " + (string)e.what());
}
}
const long long calc_totals = max(1ll, global_totals - cpu_old.at("totals"));
const long long calc_idles = max(1ll, global_idles - cpu_old.at("idles"));
//? Populate cpu.cpu_percent with all fields from syscall
for (int ii = 0; const auto &val : times_summed) {
cpu.cpu_percent.at(time_names.at(ii)).push_back(clamp((long long)round((double)(val - cpu_old.at(time_names.at(ii))) * 100 / calc_totals), 0ll, 100ll));
cpu_old.at(time_names.at(ii)) = val;
//? Reduce size if there are more values than needed for graph
while (cmp_greater(cpu.cpu_percent.at(time_names.at(ii)).size(), width * 2)) cpu.cpu_percent.at(time_names.at(ii)).pop_front();
ii++;
}
cpu_old.at("totals") = global_totals;
cpu_old.at("idles") = global_idles;
//? Total usage of cpu
cpu.cpu_percent.at("total").push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));
//? Reduce size if there are more values than needed for graph
while (cmp_greater(cpu.cpu_percent.at("total").size(), width * 2)) cpu.cpu_percent.at("total").pop_front();
if (Config::getB("show_cpu_freq")) {
auto hz = get_cpuHz();
if (hz != "") {
cpuHz = hz;
}
}
if (Config::getB("check_temp") and got_sensors)
update_sensors();
if (Config::getB("show_battery") and has_battery)
current_bat = get_battery();
return cpu;
}
} // namespace Cpu
namespace Mem {
bool has_swap = false;
vector<string> fstab;
fs::file_time_type fstab_time;
int disk_ios = 0;
vector<string> last_found;
mem_info current_mem{};
uint64_t get_totalMem() {
return Shared::totalMem;
}
int64_t getCFNumber(CFDictionaryRef dict, const void *key) {
CFNumberRef ref = (CFNumberRef)CFDictionaryGetValue(dict, key);
if (ref) {
int64_t value;
CFNumberGetValue(ref, kCFNumberSInt64Type, &value);
return value;
}
return 0;
}
string getCFString(io_registry_entry_t volumeRef, CFStringRef key) {
CFStringRef bsdNameRef = (CFStringRef)IORegistryEntryCreateCFProperty(volumeRef, key, kCFAllocatorDefault, 0);
if (bsdNameRef) {
char buf[200];
CFStringGetCString(bsdNameRef, buf, 200, kCFStringEncodingASCII);
CFRelease(bsdNameRef);
return string(buf);
}
return "";
}
bool isWhole(io_registry_entry_t volumeRef) {
CFBooleanRef isWhole = (CFBooleanRef)IORegistryEntryCreateCFProperty(volumeRef, CFSTR("Whole"), kCFAllocatorDefault, 0);
Boolean val = CFBooleanGetValue(isWhole);
CFRelease(isWhole);
return bool(val);
}
class IOObject {
public:
IOObject(string name, io_object_t& obj) : name(name), object(obj) {}
virtual ~IOObject() { IOObjectRelease(object); }
private:
string name;
io_object_t &object;
};
void collect_disk(unordered_flat_map<string, disk_info> &disks, unordered_flat_map<string, string> &mapping) {
io_registry_entry_t drive;
io_iterator_t drive_list;
mach_port_t libtop_master_port;
if (IOMasterPort(bootstrap_port, &libtop_master_port)) {
Logger::error("errot getting master port");
return;
}
/* Get the list of all drive objects. */
if (IOServiceGetMatchingServices(libtop_master_port,
IOServiceMatching("IOMediaBSDClient"), &drive_list)) {
Logger::error("Error in IOServiceGetMatchingServices()");
return;
}
auto d = IOObject("drive list", drive_list); // dummy var so it gets destroyed
while ((drive = IOIteratorNext(drive_list)) != 0) {
auto dr = IOObject("drive", drive);
io_registry_entry_t volumeRef;
IORegistryEntryGetParentEntry(drive, kIOServicePlane, &volumeRef);
if (volumeRef) {
if (!isWhole(volumeRef)) {
string bsdName = getCFString(volumeRef, CFSTR("BSD Name"));
string device = getCFString(volumeRef, CFSTR("VolGroupMntFromName"));
if (!mapping.contains(device)) {
device = "/dev/" + bsdName; // try again with BSD name - not all volumes seem to have VolGroupMntFromName property
}
if (device != "") {
if (mapping.contains(device)) {
string mountpoint = mapping.at(device);
if (disks.contains(mountpoint)) {
auto& disk = disks.at(mountpoint);
CFDictionaryRef properties;
IORegistryEntryCreateCFProperties(volumeRef, (CFMutableDictionaryRef *)&properties, kCFAllocatorDefault, 0);
if (properties) {
CFDictionaryRef statistics = (CFDictionaryRef)CFDictionaryGetValue(properties, CFSTR("Statistics"));
if (statistics) {
disk_ios++;
int64_t readBytes = getCFNumber(statistics, CFSTR("Bytes read from block device"));
if (disk.io_read.empty())
disk.io_read.push_back(0);
else
disk.io_read.push_back(max((int64_t)0, (readBytes - disk.old_io.at(0))));
disk.old_io.at(0) = readBytes;
while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front();
int64_t writeBytes = getCFNumber(statistics, CFSTR("Bytes written to block device"));
if (disk.io_write.empty())
disk.io_write.push_back(0);
else
disk.io_write.push_back(max((int64_t)0, (writeBytes - disk.old_io.at(1))));
disk.old_io.at(1) = writeBytes;
while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front();
// IOKit does not give us IO times, (use IO read + IO write with 1 MiB being 100% to get some activity indication)
if (disk.io_activity.empty())
disk.io_activity.push_back(0);
else
disk.io_activity.push_back(clamp((long)round((double)(disk.io_write.back() + disk.io_read.back()) / (1 << 20)), 0l, 100l));
while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front();
}
}
CFRelease(properties);
}
}
}
}
}
}
}
auto collect(bool no_update) -> mem_info & {
if (Runner::stopping or (no_update and not current_mem.percent.at("used").empty()))
return current_mem;
auto show_swap = Config::getB("show_swap");
auto show_disks = Config::getB("show_disks");
auto swap_disk = Config::getB("swap_disk");
auto &mem = current_mem;
static bool snapped = (getenv("BTOP_SNAPPED") != NULL);
vm_statistics64 p;
mach_msg_type_number_t info_size = HOST_VM_INFO64_COUNT;
if (host_statistics64(mach_host_self(), HOST_VM_INFO64, (host_info64_t)&p, &info_size) == 0) {
mem.stats.at("free") = p.free_count * Shared::pageSize;
mem.stats.at("cached") = p.external_page_count * Shared::pageSize;
mem.stats.at("used") = (p.active_count + p.inactive_count + p.wire_count) * Shared::pageSize;
mem.stats.at("available") = Shared::totalMem - mem.stats.at("used");
}
int mib[2] = {CTL_VM, VM_SWAPUSAGE};
struct xsw_usage swap;
size_t len = sizeof(struct xsw_usage);
if (sysctl(mib, 2, &swap, &len, NULL, 0) == 0) {
mem.stats.at("swap_total") = swap.xsu_total;
mem.stats.at("swap_free") = swap.xsu_avail;
mem.stats.at("swap_used") = swap.xsu_used;
}
if (show_swap and mem.stats.at("swap_total") > 0) {
for (const auto &name : swap_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / mem.stats.at("swap_total")));
while (cmp_greater(mem.percent.at(name).size(), width * 2))
mem.percent.at(name).pop_front();
}
has_swap = true;
} else
has_swap = false;
//? Calculate percentages
for (const auto &name : mem_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / Shared::totalMem));
while (cmp_greater(mem.percent.at(name).size(), width * 2))
mem.percent.at(name).pop_front();
}
if (show_disks) {
unordered_flat_map<string, string> mapping; // keep mapping from device -> mountpoint, since IOKit doesn't give us the mountpoint
double uptime = system_uptime();
auto &disks_filter = Config::getS("disks_filter");
bool filter_exclude = false;
// auto only_physical = Config::getB("only_physical");
auto &disks = mem.disks;
vector<string> filter;
if (not disks_filter.empty()) {
filter = ssplit(disks_filter);
if (filter.at(0).starts_with("exclude=")) {
filter_exclude = true;
filter.at(0) = filter.at(0).substr(8);
}
}
struct statfs *stfs;
int count = getmntinfo(&stfs, MNT_WAIT);
vector<string> found;
found.reserve(last_found.size());
for (int i = 0; i < count; i++) {
std::error_code ec;
string mountpoint = stfs[i].f_mntonname;
string dev = stfs[i].f_mntfromname;
mapping[dev] = mountpoint;
if (string(stfs[i].f_fstypename) == "autofs") {
continue;
}
//? Match filter if not empty
if (not filter.empty()) {
bool match = v_contains(filter, mountpoint);
if ((filter_exclude and match) or (not filter_exclude and not match))
continue;
}
found.push_back(mountpoint);
if (not disks.contains(mountpoint)) {
disks[mountpoint] = disk_info{fs::canonical(dev, ec), fs::path(mountpoint).filename()};
if (disks.at(mountpoint).dev.empty())
disks.at(mountpoint).dev = dev;
if (disks.at(mountpoint).name.empty())
disks.at(mountpoint).name = (mountpoint == "/" ? "root" : mountpoint);
}
if (not v_contains(last_found, mountpoint))
redraw = true;
disks.at(mountpoint).free = stfs[i].f_bfree;
disks.at(mountpoint).total = stfs[i].f_iosize;
}
//? Remove disks no longer mounted or filtered out
if (swap_disk and has_swap) found.push_back("swap");
for (auto it = disks.begin(); it != disks.end();) {
if (not v_contains(found, it->first))
it = disks.erase(it);
else
it++;
}
if (found.size() != last_found.size()) redraw = true;
last_found = std::move(found);
//? Get disk/partition stats
for (auto &[mountpoint, disk] : disks) {
if (std::error_code ec; not fs::exists(mountpoint, ec))
continue;
struct statvfs vfs;
if (statvfs(mountpoint.c_str(), &vfs) < 0) {
Logger::warning("Failed to get disk/partition stats with statvfs() for: " + mountpoint);
continue;
}
disk.total = vfs.f_blocks * vfs.f_frsize;
disk.free = vfs.f_bfree * vfs.f_frsize;
disk.used = disk.total - disk.free;
disk.used_percent = round((double)disk.used * 100 / disk.total);
disk.free_percent = 100 - disk.used_percent;
}
//? Setup disks order in UI and add swap if enabled
mem.disks_order.clear();
if (snapped and disks.contains("/mnt"))
mem.disks_order.push_back("/mnt");
else if (disks.contains("/"))
mem.disks_order.push_back("/");
if (swap_disk and has_swap) {
mem.disks_order.push_back("swap");
if (not disks.contains("swap"))
disks["swap"] = {"", "swap"};
disks.at("swap").total = mem.stats.at("swap_total");
disks.at("swap").used = mem.stats.at("swap_used");
disks.at("swap").free = mem.stats.at("swap_free");
disks.at("swap").used_percent = mem.percent.at("swap_used").back();
disks.at("swap").free_percent = mem.percent.at("swap_free").back();
}
for (const auto &name : last_found)
if (not is_in(name, "/", "swap", "/dev"))
mem.disks_order.push_back(name);
disk_ios = 0;
collect_disk(disks, mapping);
old_uptime = uptime;
}
return mem;
}
} // namespace Mem
namespace Net {
unordered_flat_map<string, net_info> current_net;
net_info empty_net = {};
vector<string> interfaces;
string selected_iface;
int errors = 0;
unordered_flat_map<string, uint64_t> graph_max = {{"download", {}}, {"upload", {}}};
unordered_flat_map<string, array<int, 2>> max_count = {{"download", {}}, {"upload", {}}};
bool rescale = true;
uint64_t timestamp = 0;
//* RAII wrapper for getifaddrs
class getifaddr_wrapper {
struct ifaddrs *ifaddr;
public:
int status;
getifaddr_wrapper() { status = getifaddrs(&ifaddr); }
~getifaddr_wrapper() { freeifaddrs(ifaddr); }
auto operator()() -> struct ifaddrs * { return ifaddr; }
};
auto collect(bool no_update) -> net_info & {
auto &net = current_net;
auto &config_iface = Config::getS("net_iface");
auto net_sync = Config::getB("net_sync");
auto net_auto = Config::getB("net_auto");
auto new_timestamp = time_ms();
if (not no_update and errors < 3) {
//? Get interface list using getifaddrs() wrapper
getifaddr_wrapper if_wrap{};
if (if_wrap.status != 0) {
errors++;
Logger::error("Net::collect() -> getifaddrs() failed with id " + to_string(if_wrap.status));
redraw = true;
return empty_net;
}
int family = 0;
static_assert(INET6_ADDRSTRLEN >= INET_ADDRSTRLEN); // 46 >= 16, compile-time assurance.
enum { IPBUFFER_MAXSIZE = INET6_ADDRSTRLEN }; // manually using the known biggest value, guarded by the above static_assert
char ip[IPBUFFER_MAXSIZE];
interfaces.clear();
string ipv4, ipv6;
//? Iteration over all items in getifaddrs() list
for (auto *ifa = if_wrap(); ifa != NULL; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == NULL) continue;
family = ifa->ifa_addr->sa_family;
const auto &iface = ifa->ifa_name;
//? Update available interfaces vector and get status of interface
if (not v_contains(interfaces, iface)) {
interfaces.push_back(iface);
net[iface].connected = (ifa->ifa_flags & IFF_RUNNING);
// An interface can have more than one IP of the same family associated with it,
// but we pick only the first one to show in the NET box.
// Note: Interfaces without any IPv4 and IPv6 set are still valid and monitorable!
net[iface].ipv4.clear();
net[iface].ipv6.clear();
}
//? Get IPv4 address
if (family == AF_INET) {
if (net[iface].ipv4.empty()) {
if (NULL != inet_ntop(family, &(reinterpret_cast<struct sockaddr_in*>(ifa->ifa_addr)->sin_addr), ip, IPBUFFER_MAXSIZE)) {
net[iface].ipv4 = ip;
} else {
int errsv = errno;
Logger::error("Net::collect() -> Failed to convert IPv4 to string for iface " + string(iface) + ", errno: " + strerror(errsv));
}
}
}
//? Get IPv6 address
else if (family == AF_INET6) {
if (net[iface].ipv6.empty()) {
if (NULL != inet_ntop(family, &(reinterpret_cast<struct sockaddr_in6*>(ifa->ifa_addr)->sin6_addr), ip, IPBUFFER_MAXSIZE)) {
net[iface].ipv6 = ip;
} else {
int errsv = errno;
Logger::error("Net::collect() -> Failed to convert IPv6 to string for iface " + string(iface) + ", errno: " + strerror(errsv));
}
}
} // else, ignoring family==AF_LINK (see man 3 getifaddrs)
}
unordered_flat_map<string, std::tuple<uint64_t, uint64_t>> ifstats;
int mib[] = {CTL_NET, PF_ROUTE, 0, 0, NET_RT_IFLIST2, 0};
size_t len;
if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0) {
Logger::error("failed getting network interfaces");
} else {
std::unique_ptr<char[]> buf(new char[len]);
if (sysctl(mib, 6, buf.get(), &len, NULL, 0) < 0) {
Logger::error("failed getting network interfaces");
} else {
char *lim = buf.get() + len;
char *next = NULL;
for (next = buf.get(); next < lim;) {
struct if_msghdr *ifm = (struct if_msghdr *)next;
next += ifm->ifm_msglen;
if (ifm->ifm_type == RTM_IFINFO2) {
struct if_msghdr2 *if2m = (struct if_msghdr2 *)ifm;
struct sockaddr_dl *sdl = (struct sockaddr_dl *)(if2m + 1);
char iface[32];
strncpy(iface, sdl->sdl_data, sdl->sdl_nlen);
iface[sdl->sdl_nlen] = 0;
ifstats[iface] = std::tuple(if2m->ifm_data.ifi_ibytes, if2m->ifm_data.ifi_obytes);
}
}
}
}
//? Get total recieved and transmitted bytes + device address if no ip was found
for (const auto &iface : interfaces) {
for (const string dir : {"download", "upload"}) {
auto &saved_stat = net.at(iface).stat.at(dir);
auto &bandwidth = net.at(iface).bandwidth.at(dir);
uint64_t val = dir == "download" ? std::get<0>(ifstats[iface]) : std::get<1>(ifstats[iface]);
//? Update speed, total and top values
if (val < saved_stat.last) {
saved_stat.rollover += saved_stat.last;
saved_stat.last = 0;
}
if (cmp_greater((unsigned long long)saved_stat.rollover + (unsigned long long)val, numeric_limits<uint64_t>::max())) {
saved_stat.rollover = 0;
saved_stat.last = 0;
}
saved_stat.speed = round((double)(val - saved_stat.last) / ((double)(new_timestamp - timestamp) / 1000));
if (saved_stat.speed > saved_stat.top) saved_stat.top = saved_stat.speed;
if (saved_stat.offset > val + saved_stat.rollover) saved_stat.offset = 0;
saved_stat.total = (val + saved_stat.rollover) - saved_stat.offset;
saved_stat.last = val;
//? Add values to graph
bandwidth.push_back(saved_stat.speed);
while (cmp_greater(bandwidth.size(), width * 2)) bandwidth.pop_front();
//? Set counters for auto scaling
if (net_auto and selected_iface == iface) {
if (saved_stat.speed > graph_max[dir]) {
++max_count[dir][0];
if (max_count[dir][1] > 0) --max_count[dir][1];
} else if (graph_max[dir] > 10 << 10 and saved_stat.speed < graph_max[dir] / 10) {
++max_count[dir][1];
if (max_count[dir][0] > 0) --max_count[dir][0];
}
}
}
}
//? Clean up net map if needed
if (net.size() > interfaces.size()) {
for (auto it = net.begin(); it != net.end();) {
if (not v_contains(interfaces, it->first))
it = net.erase(it);
else
it++;
}
net.compact();
}
timestamp = new_timestamp;
}
//? Return empty net_info struct if no interfaces was found
if (net.empty())
return empty_net;
//? Find an interface to display if selected isn't set or valid
if (selected_iface.empty() or not v_contains(interfaces, selected_iface)) {
max_count["download"][0] = max_count["download"][1] = max_count["upload"][0] = max_count["upload"][1] = 0;
redraw = true;
if (net_auto) rescale = true;
if (not config_iface.empty() and v_contains(interfaces, config_iface))
selected_iface = config_iface;
else {
//? Sort interfaces by total upload + download bytes
auto sorted_interfaces = interfaces;
rng::sort(sorted_interfaces, [&](const auto &a, const auto &b) {
return cmp_greater(net.at(a).stat["download"].total + net.at(a).stat["upload"].total,
net.at(b).stat["download"].total + net.at(b).stat["upload"].total);
});
selected_iface.clear();
//? Try to set to a connected interface
for (const auto &iface : sorted_interfaces) {
if (net.at(iface).connected) selected_iface = iface;
break;
}
//? If no interface is connected set to first available
if (selected_iface.empty() and not sorted_interfaces.empty())
selected_iface = sorted_interfaces.at(0);
else if (sorted_interfaces.empty())
return empty_net;
}
}
//? Calculate max scale for graphs if needed
if (net_auto) {
bool sync = false;
for (const auto &dir : {"download", "upload"}) {
for (const auto &sel : {0, 1}) {
if (rescale or max_count[dir][sel] >= 5) {
const uint64_t avg_speed = (net[selected_iface].bandwidth[dir].size() > 5
? std::accumulate(net.at(selected_iface).bandwidth.at(dir).rbegin(), net.at(selected_iface).bandwidth.at(dir).rbegin() + 5, 0) / 5
: net[selected_iface].stat[dir].speed);
graph_max[dir] = max(uint64_t(avg_speed * (sel == 0 ? 1.3 : 3.0)), (uint64_t)10 << 10);
max_count[dir][0] = max_count[dir][1] = 0;
redraw = true;
if (net_sync) sync = true;
break;
}
}
//? Sync download/upload graphs if enabled
if (sync) {
const auto other = (string(dir) == "upload" ? "download" : "upload");
graph_max[other] = graph_max[dir];
max_count[other][0] = max_count[other][1] = 0;
break;
}
}
}
rescale = false;
return net.at(selected_iface);
}
} // namespace Net
namespace Proc {
vector<proc_info> current_procs;
unordered_flat_map<string, string> uid_user;
string current_sort;
string current_filter;
bool current_rev = false;
fs::file_time_type passwd_time;
uint64_t cputimes;
int collapse = -1, expand = -1;
uint64_t old_cputimes = 0;
atomic<int> numpids = 0;
int filter_found = 0;
detail_container detailed;
string get_status(char s) {
if (s & SRUN) return "Running";
if (s & SSLEEP) return "Sleeping";
if (s & SIDL) return "Idle";
if (s & SSTOP) return "Stopped";
if (s & SZOMB) return "Zombie";
return "Unknown";
}
//* Get detailed info for selected process
void _collect_details(const size_t pid, vector<proc_info> &procs) {
if (pid != detailed.last_pid) {
detailed = {};
detailed.last_pid = pid;
detailed.skip_smaps = not Config::getB("proc_info_smaps");
}
//? Copy proc_info for process from proc vector
auto p_info = rng::find(procs, pid, &proc_info::pid);
detailed.entry = *p_info;
//? Update cpu percent deque for process cpu graph
if (not Config::getB("proc_per_core")) detailed.entry.cpu_p *= Shared::coreCount;
detailed.cpu_percent.push_back(clamp((long long)round(detailed.entry.cpu_p), 0ll, 100ll));
while (cmp_greater(detailed.cpu_percent.size(), width)) detailed.cpu_percent.pop_front();
//? Process runtime : current time - start time (both in unix time - seconds since epoch)
struct timeval currentTime;
gettimeofday(&currentTime, NULL);
detailed.elapsed = sec_to_dhms(currentTime.tv_sec - (detailed.entry.cpu_s / 1'000'000));
if (detailed.elapsed.size() > 8) detailed.elapsed.resize(detailed.elapsed.size() - 3);
//? Get parent process name
if (detailed.parent.empty()) {
auto p_entry = rng::find(procs, detailed.entry.ppid, &proc_info::pid);
if (p_entry != procs.end()) detailed.parent = p_entry->name;
}
//? Expand process status from single char to explanative string
detailed.status = get_status(detailed.entry.state);
detailed.mem_bytes.push_back(detailed.entry.mem);
detailed.memory = floating_humanizer(detailed.entry.mem);
if (detailed.first_mem == -1 or detailed.first_mem < detailed.mem_bytes.back() / 2 or detailed.first_mem > detailed.mem_bytes.back() * 4) {
detailed.first_mem = min((uint64_t)detailed.mem_bytes.back() * 2, Mem::get_totalMem());
redraw = true;
}
while (cmp_greater(detailed.mem_bytes.size(), width)) detailed.mem_bytes.pop_front();
rusage_info_current rusage;
if (proc_pid_rusage(pid, RUSAGE_INFO_CURRENT, (void **)&rusage) == 0) {
// this fails for processes we don't own - same as in Linux
detailed.io_read = floating_humanizer(rusage.ri_diskio_bytesread);
detailed.io_write = floating_humanizer(rusage.ri_diskio_byteswritten);
}
}
//* Collects and sorts process information from /proc
auto collect(bool no_update) -> vector<proc_info> & {
const auto &sorting = Config::getS("proc_sorting");
auto reverse = Config::getB("proc_reversed");
const auto &filter = Config::getS("proc_filter");
auto per_core = Config::getB("proc_per_core");
auto tree = Config::getB("proc_tree");
auto show_detailed = Config::getB("show_detailed");
const size_t detailed_pid = Config::getI("detailed_pid");
bool should_filter = current_filter != filter;
if (should_filter) current_filter = filter;
bool sorted_change = (sorting != current_sort or reverse != current_rev or should_filter);
if (sorted_change) {
current_sort = sorting;
current_rev = reverse;
}
const int cmult = (per_core) ? Shared::coreCount : 1;
bool got_detailed = false;
static vector<size_t> found;
//* Use pids from last update if only changing filter, sorting or tree options
if (no_update and not current_procs.empty()) {
if (show_detailed and detailed_pid != detailed.last_pid) _collect_details(detailed_pid, current_procs);
} else {
//* ---------------------------------------------Collection start----------------------------------------------
{ //* Get CPU totals
natural_t cpu_count;
kern_return_t error;
processor_cpu_load_info_data_t *cpu_load_info = NULL;
MachProcessorInfo info{};
error = host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &cpu_count, &info.info_array, &info.info_count);
if (error != KERN_SUCCESS) {
Logger::error("Failed getting CPU load info");
}
cpu_load_info = (processor_cpu_load_info_data_t *)info.info_array;
cputimes = 0;
for (natural_t i = 0; i < cpu_count; i++) {
cputimes += (cpu_load_info[i].cpu_ticks[CPU_STATE_USER]
+ cpu_load_info[i].cpu_ticks[CPU_STATE_NICE]
+ cpu_load_info[i].cpu_ticks[CPU_STATE_SYSTEM]
+ cpu_load_info[i].cpu_ticks[CPU_STATE_IDLE]);
}
}
should_filter = true;
int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0};
found.clear();
size_t size = 0;
const auto timeNow = time_micros();
if (sysctl(mib, 4, NULL, &size, NULL, 0) < 0 || size == 0) {
Logger::error("Unable to get size of kproc_infos");
}
uint64_t cpu_t = 0;
std::unique_ptr<kinfo_proc[]> processes(new kinfo_proc[size / sizeof(kinfo_proc)]);
if (sysctl(mib, 4, processes.get(), &size, NULL, 0) == 0) {
size_t count = size / sizeof(struct kinfo_proc);
for (size_t i = 0; i < count; i++) { //* iterate over all processes in kinfo_proc
struct kinfo_proc& kproc = processes.get()[i];
const size_t pid = (size_t)kproc.kp_proc.p_pid;
if (pid < 1) continue;
found.push_back(pid);
//? Check if pid already exists in current_procs
bool no_cache = false;
auto find_old = rng::find(current_procs, pid, &proc_info::pid);
if (find_old == current_procs.end()) {
current_procs.push_back({pid});
find_old = current_procs.end() - 1;
no_cache = true;
}
auto &new_proc = *find_old;
//? Get program name, command, username, parent pid, nice and status
if (no_cache) {
char fullname[PROC_PIDPATHINFO_MAXSIZE];
proc_pidpath(pid, fullname, sizeof(fullname));
const string f_name = std::string(fullname);
size_t lastSlash = f_name.find_last_of('/');
new_proc.name = f_name.substr(lastSlash + 1);
//? Get process arguments if possible, fallback to process path in case of failure
if (Shared::arg_max > 0) {
std::unique_ptr<char[]> proc_chars(new char[Shared::arg_max]);
int mib[] = {CTL_KERN, KERN_PROCARGS2, (int)pid};
size_t argmax = Shared::arg_max;
if (sysctl(mib, 3, proc_chars.get(), &argmax, NULL, 0) == 0) {
int argc = 0;
memcpy(&argc, &proc_chars.get()[0], sizeof(argc));
std::string_view proc_args(proc_chars.get(), argmax);
if (size_t null_pos = proc_args.find('\0', sizeof(argc)); null_pos != string::npos) {
if (size_t start_pos = proc_args.find_first_not_of('\0', null_pos); start_pos != string::npos) {
while (argc-- > 0 and null_pos != string::npos and cmp_less(new_proc.cmd.size(), 1000)) {
null_pos = proc_args.find('\0', start_pos);
new_proc.cmd += (string)proc_args.substr(start_pos, null_pos - start_pos) + ' ';
start_pos = null_pos + 1;
}
}
}
if (not new_proc.cmd.empty()) new_proc.cmd.pop_back();
}
}
if (new_proc.cmd.empty()) new_proc.cmd = f_name;
if (new_proc.cmd.size() > 1000) {
new_proc.cmd.resize(1000);
new_proc.cmd.shrink_to_fit();
}
new_proc.ppid = kproc.kp_eproc.e_ppid;
new_proc.cpu_s = kproc.kp_proc.p_starttime.tv_sec * 1'000'000 + kproc.kp_proc.p_starttime.tv_usec;
struct passwd *pwd = getpwuid(kproc.kp_eproc.e_ucred.cr_uid);
new_proc.user = pwd->pw_name;
}
new_proc.p_nice = kproc.kp_proc.p_nice;
new_proc.state = kproc.kp_proc.p_stat;
//? Get threads, mem and cpu usage
struct proc_taskinfo pti;
if (sizeof(pti) == proc_pidinfo(new_proc.pid, PROC_PIDTASKINFO, 0, &pti, sizeof(pti))) {
new_proc.threads = pti.pti_threadnum;
new_proc.mem = pti.pti_resident_size;
cpu_t = pti.pti_total_user + pti.pti_total_system;
if (new_proc.cpu_t == 0) new_proc.cpu_t = cpu_t;
}
//? Process cpu usage since last update
new_proc.cpu_p = clamp(round(((cpu_t - new_proc.cpu_t) * Shared::machTck) / ((cputimes - old_cputimes) * Shared::clkTck)) * cmult / 1000.0, 0.0, 100.0 * Shared::coreCount);
//? Process cumulative cpu usage since process start
new_proc.cpu_c = (double)(cpu_t * Shared::machTck) / (timeNow - new_proc.cpu_s);
//? Update cached value with latest cpu times
new_proc.cpu_t = cpu_t;
if (show_detailed and not got_detailed and new_proc.pid == detailed_pid) {
got_detailed = true;
}
}
// //? Clear dead processes from current_procs
auto eraser = rng::remove_if(current_procs, [&](const auto &element) { return not v_contains(found, element.pid); });
current_procs.erase(eraser.begin(), eraser.end());
//? Update the details info box for process if active
if (show_detailed and got_detailed) {
_collect_details(detailed_pid, current_procs);
} else if (show_detailed and not got_detailed and detailed.status != "Dead") {
detailed.status = "Dead";
redraw = true;
}
old_cputimes = cputimes;
}
}
//* ---------------------------------------------Collection done-----------------------------------------------
//* Match filter if defined
if (should_filter) {
filter_found = 0;
for (auto &p : current_procs) {
if (not tree and not filter.empty()) {
if (not s_contains_ic(to_string(p.pid), filter) and not s_contains_ic(p.name, filter) and not s_contains_ic(p.cmd, filter) and not s_contains_ic(p.user, filter)) {
p.filtered = true;
filter_found++;
} else {
p.filtered = false;
}
} else {
p.filtered = false;
}
}
}
//* Sort processes
if (sorted_change or not no_update) {
proc_sorter(current_procs, sorting, reverse, tree);
}
//* Generate tree view if enabled
if (tree and (not no_update or should_filter or sorted_change)) {
bool locate_selection = false;
if (auto find_pid = (collapse != -1 ? collapse : expand); find_pid != -1) {
auto collapser = rng::find(current_procs, find_pid, &proc_info::pid);
if (collapser != current_procs.end()) {
if (collapse == expand) {
collapser->collapsed = not collapser->collapsed;
}
else if (collapse > -1) {
collapser->collapsed = true;
}
else if (expand > -1) {
collapser->collapsed = false;
}
if (Config::ints.at("proc_selected") > 0) locate_selection = true;
}
collapse = expand = -1;
}
if (should_filter or not filter.empty()) filter_found = 0;
vector<tree_proc> tree_procs;
tree_procs.reserve(current_procs.size());
for (auto& p : current_procs) {
if (not v_contains(found, p.ppid)) p.ppid = 0;
}
//? Stable sort to retain selected sorting among processes with the same parent
rng::stable_sort(current_procs, rng::less{}, & proc_info::ppid);
//? Start recursive iteration over processes with the lowest shared parent pids
for (auto& p : rng::equal_range(current_procs, current_procs.at(0).ppid, rng::less{}, &proc_info::ppid)) {
_tree_gen(p, current_procs, tree_procs, 0, false, filter, false, no_update, should_filter);
}
//? Recursive sort over tree structure to account for collapsed processes in the tree
int index = 0;
tree_sort(tree_procs, sorting, reverse, index, current_procs.size());
//? Add tree begin symbol to first item if childless
if (tree_procs.front().children.empty())
tree_procs.front().entry.get().prefix.replace(tree_procs.front().entry.get().prefix.size() - 8, 8, " ┌─ ");
//? Add tree terminator symbol to last item if childless
if (tree_procs.back().children.empty())
tree_procs.back().entry.get().prefix.replace(tree_procs.back().entry.get().prefix.size() - 8, 8, " └─ ");
//? Final sort based on tree index
rng::sort(current_procs, rng::less{}, & proc_info::tree_index);
//? Move current selection/view to the selected process when collapsing/expanding in the tree
if (locate_selection) {
int loc = rng::find(current_procs, Proc::selected_pid, &proc_info::pid)->tree_index;
if (Config::ints.at("proc_start") >= loc or Config::ints.at("proc_start") <= loc - Proc::select_max)
Config::ints.at("proc_start") = max(0, loc - 1);
Config::ints.at("proc_selected") = loc - Config::ints.at("proc_start") + 1;
}
}
numpids = (int)current_procs.size() - filter_found;
return current_procs;
}
} // namespace Proc
namespace Tools {
double system_uptime() {
struct timeval ts, currTime;
std::size_t len = sizeof(ts);
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
if (sysctl(mib, 2, &ts, &len, NULL, 0) != -1) {
gettimeofday(&currTime, NULL);
return currTime.tv_sec - ts.tv_sec;
}
return 0.0;
}
} // namespace Tools