btop/src/osx/btop_collect.cpp
2021-10-05 15:43:05 +02:00

528 lines
17 KiB
C++

/* Copyright 2021 Aristocratos (jakob@qvantnet.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
indent = tab
tab-size = 4
*/
#include <ifaddrs.h>
#include <libproc.h>
#include <mach/mach_host.h>
#include <mach/mach_init.h>
#include <mach/mach_types.h>
#include <mach/processor_info.h>
#include <mach/vm_statistics.h>
#include <net/if.h>
#include <netdb.h>
#include <pwd.h>
#include <sys/statvfs.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <unistd.h>
#include <btop_config.hpp>
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include <cmath>
#include <fstream>
#include <numeric>
#include <ranges>
#include <regex>
#include <string>
using std::clamp, std::string_literals::operator""s, std::cmp_equal, std::cmp_less, std::cmp_greater;
using std::ifstream, std::numeric_limits, std::streamsize, std::round, std::max, std::min;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------
namespace Cpu {
vector<long long> core_old_totals;
vector<long long> core_old_idles;
vector<string> available_fields;
vector<string> available_sensors = {"Auto"};
cpu_info current_cpu;
fs::path freq_path = "/sys/devices/system/cpu/cpufreq/policy0/scaling_cur_freq";
bool got_sensors = false, cpu_temp_only = false;
//* Populate found_sensors map
bool get_sensors();
//* Get current cpu clock speed
string get_cpuHz();
//* Search /proc/cpuinfo for a cpu name
string get_cpuName();
struct Sensor {
fs::path path;
string label;
int64_t temp = 0;
int64_t high = 0;
int64_t crit = 0;
};
unordered_flat_map<string, Sensor> found_sensors;
string cpu_sensor;
vector<string> core_sensors;
unordered_flat_map<int, int> core_mapping;
} // namespace Cpu
namespace Mem {
double old_uptime;
}
namespace Shared {
fs::path passwd_path;
uint64_t totalMem;
long pageSize, clkTck, coreCount;
int totalMem_len;
void init() {
//? Shared global variables init
// passwd_path = (fs::is_regular_file(fs::path("/etc/passwd")) and access("/etc/passwd", R_OK) != -1) ? "/etc/passwd" : "";
// if (passwd_path.empty())
// Logger::warning("Could not read /etc/passwd, will show UID instead of username.");
coreCount = sysconf(_SC_NPROCESSORS_ONLN);
if (coreCount < 1) {
coreCount = 1;
Logger::warning("Could not determine number of cores, defaulting to 1.");
}
pageSize = sysconf(_SC_PAGE_SIZE);
if (pageSize <= 0) {
pageSize = 4096;
Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
}
clkTck = sysconf(_SC_CLK_TCK);
if (clkTck <= 0) {
clkTck = 100;
Logger::warning("Could not get system clock ticks per second. Defaulting to 100, processes cpu usage might be incorrect.");
}
int64_t memsize = 0;
size_t size = sizeof(memsize);
if (sysctlbyname("hw.memsize", &memsize, &size, NULL, 0) < 0) {
Logger::warning("Could not get memory size");
}
totalMem = memsize;
Cpu::cpuName = Cpu::get_cpuName();
}
} // namespace Shared
namespace Cpu {
string cpuName;
string cpuHz;
bool has_battery = true;
tuple<int, long, string> current_bat;
const array<string, 10> time_names = {"user", "nice", "system", "idle", "iowait", "irq", "softirq", "steal", "guest", "guest_nice"};
unordered_flat_map<string, long long> cpu_old = {
{"totals", 0},
{"idles", 0},
{"user", 0},
{"nice", 0},
{"system", 0},
{"idle", 0},
{"iowait", 0},
{"irq", 0},
{"softirq", 0},
{"steal", 0},
{"guest", 0},
{"guest_nice", 0}};
string get_cpuName() {
char buffer[1024];
size_t size = sizeof(buffer);
if (sysctlbyname("machdep.cpu.brand_string", &buffer, &size, NULL, 0) < 0) {
Logger::error("Failed to get CPU name");
return "";
}
return string(buffer);
}
bool get_sensors() {
return not found_sensors.empty();
}
void update_sensors() {
if (cpu_sensor.empty())
return;
const auto &cpu_sensor = (not Config::getS("cpu_sensor").empty() and found_sensors.contains(Config::getS("cpu_sensor")) ? Config::getS("cpu_sensor") : Cpu::cpu_sensor);
found_sensors.at(cpu_sensor).temp = stol(readfile(found_sensors.at(cpu_sensor).path, "0")) / 1000;
current_cpu.temp.at(0).push_back(found_sensors.at(cpu_sensor).temp);
current_cpu.temp_max = found_sensors.at(cpu_sensor).crit;
if (current_cpu.temp.at(0).size() > 20)
current_cpu.temp.at(0).pop_front();
if (Config::getB("show_coretemp") and not cpu_temp_only) {
vector<string> done;
for (const auto &sensor : core_sensors) {
if (v_contains(done, sensor))
continue;
found_sensors.at(sensor).temp = stol(readfile(found_sensors.at(sensor).path, "0")) / 1000;
done.push_back(sensor);
}
for (const auto &[core, temp] : core_mapping) {
if (cmp_less(core + 1, current_cpu.temp.size()) and cmp_less(temp, core_sensors.size())) {
current_cpu.temp.at(core + 1).push_back(found_sensors.at(core_sensors.at(temp)).temp);
if (current_cpu.temp.at(core + 1).size() > 20)
current_cpu.temp.at(core + 1).pop_front();
}
}
}
}
string get_cpuHz() {
uint64_t freq = 0;
size_t size = sizeof(freq);
return "1.0";
if (sysctlbyname("hw.cpufrequency", &freq, &size, NULL, 0) < 0) {
Logger::error("Failed to get CPU frequency");
}
return "" + freq;
}
auto get_core_mapping() -> unordered_flat_map<int, int> {
unordered_flat_map<int, int> core_map;
return core_map;
}
auto get_battery() -> tuple<int, long, string> {
// if (not has_battery)
return {0, 0, ""};
}
auto collect(const bool no_update) -> cpu_info & {
if (Runner::stopping or (no_update and not current_cpu.cpu_percent.at("total").empty()))
return current_cpu;
auto &cpu = current_cpu;
if (Config::getB("show_cpu_freq"))
cpuHz = get_cpuHz();
return cpu;
}
} // namespace Cpu
namespace Mem {
bool has_swap = false;
vector<string> fstab;
fs::file_time_type fstab_time;
int disk_ios = 0;
vector<string> last_found;
mem_info current_mem{};
auto collect(const bool no_update) -> mem_info & {
if (Runner::stopping or (no_update and not current_mem.percent.at("used").empty()))
return current_mem;
auto& show_swap = Config::getB("show_swap");
auto &show_disks = Config::getB("show_disks");
auto &swap_disk = Config::getB("swap_disk");
auto &mem = current_mem;
static const bool snapped = (getenv("BTOP_SNAPPED") != NULL);
vm_statistics64 p;
mach_msg_type_number_t info_size = HOST_VM_INFO64_COUNT;
if (host_statistics64(mach_host_self(), HOST_VM_INFO64, (host_info64_t)&p, &info_size) == 0) {
mem.stats.at("available") = p.free_count * Shared::pageSize;
mem.stats.at("free") = p.free_count * Shared::pageSize;
mem.stats.at("cached") = p.external_page_count * Shared::pageSize;
mem.stats.at("used") = ((int64_t)p.active_count + (int64_t)p.inactive_count + (int64_t)p.wire_count) * (int64_t)Shared::pageSize;
}
int mib[2] = {CTL_VM, VM_SWAPUSAGE};
struct xsw_usage swap;
size_t len = sizeof(struct xsw_usage);
if (sysctl(mib, 2, &swap, &len, NULL, 0) == 0) {
mem.stats.at("swap_total") = swap.xsu_total;
mem.stats.at("swap_free") = swap.xsu_avail;
mem.stats.at("swap_used") = swap.xsu_used;
}
if (show_swap and mem.stats.at("swap_total") > 0) {
for (const auto& name : swap_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / mem.stats.at("swap_total")));
while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front();
}
has_swap = true;
}
else
has_swap = false;
//? Calculate percentages
for (const auto &name : mem_names) {
mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / Shared::totalMem));
while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front();
}
if (show_disks) {
double uptime = system_uptime();
auto &disks_filter = Config::getS("disks_filter");
bool filter_exclude = false;
auto &only_physical = Config::getB("only_physical");
auto &disks = mem.disks;
vector<string> filter;
if (not disks_filter.empty()) {
filter = ssplit(disks_filter);
if (filter.at(0).starts_with("exclude=")) {
filter_exclude = true;
filter.at(0) = filter.at(0).substr(8);
}
}
struct statfs *stfs;
int count = getmntinfo(&stfs, MNT_WAIT);
vector<string> found;
found.reserve(last_found.size());
for (int i = 0; i < count; i++) {
std::error_code ec;
string mountpoint = stfs[i].f_mntonname;
string dev = stfs[i].f_mntfromname;
disks[mountpoint] = disk_info{fs::canonical(dev, ec), fs::path(mountpoint).filename()};
//? Match filter if not empty
if (not filter.empty()) {
bool match = v_contains(filter, mountpoint);
if ((filter_exclude and match) or (not filter_exclude and not match))
continue;
}
found.push_back(mountpoint);
if (not v_contains(last_found, mountpoint)) redraw = true;
last_found = std::move(found);
if (disks.at(mountpoint).dev.empty()) disks.at(mountpoint).dev = dev;
if (disks.at(mountpoint).name.empty()) disks.at(mountpoint).name = (mountpoint == "/" ? "root" : mountpoint);
disks.at(mountpoint).free = stfs[i].f_bfree;
disks.at(mountpoint).total = stfs[i].f_iosize;
}
//? Get disk/partition stats
for (auto &[mountpoint, disk] : disks) {
if (std::error_code ec; not fs::exists(mountpoint, ec)) continue;
struct statvfs vfs;
if (statvfs(mountpoint.c_str(), &vfs) < 0) {
Logger::warning("Failed to get disk/partition stats with statvfs() for: " + mountpoint);
continue;
}
disk.total = vfs.f_blocks * vfs.f_frsize;
disk.free = vfs.f_bfree * vfs.f_frsize;
disk.used = disk.total - disk.free;
disk.used_percent = round((double)disk.used * 100 / disk.total);
disk.free_percent = 100 - disk.used_percent;
}
//? Setup disks order in UI and add swap if enabled
mem.disks_order.clear();
if (snapped and disks.contains("/mnt"))
mem.disks_order.push_back("/mnt");
else if (disks.contains("/"))
mem.disks_order.push_back("/");
if (swap_disk and has_swap) {
mem.disks_order.push_back("swap");
if (not disks.contains("swap")) disks["swap"] = {"", "swap"};
disks.at("swap").total = mem.stats.at("swap_total");
disks.at("swap").used = mem.stats.at("swap_used");
disks.at("swap").free = mem.stats.at("swap_free");
disks.at("swap").used_percent = mem.percent.at("swap_used").back();
disks.at("swap").free_percent = mem.percent.at("swap_free").back();
}
for (const auto &name : last_found)
if (not is_in(name, "/", "swap")) mem.disks_order.push_back(name);
}
return mem;
}
} // namespace Mem
namespace Net {
unordered_flat_map<string, net_info> current_net;
net_info empty_net = {};
vector<string> interfaces;
string selected_iface;
int errors = 0;
unordered_flat_map<string, uint64_t> graph_max = {{"download", {}}, {"upload", {}}};
unordered_flat_map<string, array<int, 2>> max_count = {{"download", {}}, {"upload", {}}};
bool rescale = true;
uint64_t timestamp = 0;
//* RAII wrapper for getifaddrs
class getifaddr_wrapper {
struct ifaddrs *ifaddr;
public:
int status;
getifaddr_wrapper() { status = getifaddrs(&ifaddr); }
~getifaddr_wrapper() { freeifaddrs(ifaddr); }
auto operator()() -> struct ifaddrs * { return ifaddr; }
};
auto collect(const bool no_update) -> net_info & {
return empty_net;
}
} // namespace Net
namespace Proc {
vector<proc_info> current_procs;
unordered_flat_map<string, string> uid_user;
string current_sort;
string current_filter;
bool current_rev = false;
fs::file_time_type passwd_time;
uint64_t cputimes;
int collapse = -1, expand = -1;
uint64_t old_cputimes = 0;
atomic<int> numpids = 0;
int filter_found = 0;
detail_container detailed;
//* Generate process tree list
void _tree_gen(proc_info &cur_proc, vector<proc_info> &in_procs, vector<std::reference_wrapper<proc_info>> &out_procs, int cur_depth, const bool collapsed, const string &filter, bool found = false, const bool no_update = false, const bool should_filter = false) {
auto cur_pos = out_procs.size();
bool filtering = false;
//? If filtering, include children of matching processes
if (not found and (should_filter or not filter.empty())) {
if (not s_contains(std::to_string(cur_proc.pid), filter) and not s_contains(cur_proc.name, filter) and not s_contains(cur_proc.cmd, filter) and not s_contains(cur_proc.user, filter)) {
filtering = true;
cur_proc.filtered = true;
filter_found++;
} else {
found = true;
cur_depth = 0;
}
} else if (cur_proc.filtered)
cur_proc.filtered = false;
//? Set tree index position for process if not filtered out or currently in a collapsed sub-tree
if (not collapsed and not filtering) {
out_procs.push_back(std::ref(cur_proc));
cur_proc.tree_index = out_procs.size() - 1;
//? Try to find name of the binary file and append to program name if not the same
if (cur_proc.short_cmd.empty() and not cur_proc.cmd.empty()) {
std::string_view cmd_view = cur_proc.cmd;
cmd_view = cmd_view.substr((size_t)0, min(cmd_view.find(' '), cmd_view.size()));
cmd_view = cmd_view.substr(min(cmd_view.find_last_of('/') + 1, cmd_view.size()));
cur_proc.short_cmd = (string)cmd_view;
}
} else {
cur_proc.tree_index = in_procs.size();
}
//? Recursive iteration over all children
int children = 0;
for (auto &p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) {
if (not no_update and not filtering and (collapsed or cur_proc.collapsed)) {
out_procs.back().get().cpu_p += p.cpu_p;
out_procs.back().get().mem += p.mem;
out_procs.back().get().threads += p.threads;
filter_found++;
}
if (collapsed and not filtering) {
cur_proc.filtered = true;
} else
children++;
_tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cur_proc.collapsed), filter, found, no_update, should_filter);
}
if (collapsed or filtering)
return;
//? Add tree terminator symbol if it's the last child in a sub-tree
if (out_procs.size() > cur_pos + 1 and not out_procs.back().get().prefix.ends_with("]─"))
out_procs.back().get().prefix.replace(out_procs.back().get().prefix.size() - 8, 8, " └─ ");
//? Add collapse/expand symbols if process have any children
out_procs.at(cur_pos).get().prefix = ""s * cur_depth + (children > 0 ? (cur_proc.collapsed ? "[+]─" : "[-]─") : " ├─ ");
}
//* Get detailed info for selected process
void _collect_details(const size_t pid, const uint64_t uptime, vector<proc_info> &procs) {
}
//* Collects and sorts process information from /proc
auto collect(const bool no_update) -> vector<proc_info> & {
int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0};
struct kinfo_proc *processes = NULL;
const double uptime = system_uptime();
auto procs = &current_procs;
for (int retry = 3; retry > 0; retry--) {
size_t size = 0;
if (sysctl(mib, 4, NULL, &size, NULL, 0) < 0 || size == 0) {
Logger::error("Unable to get size of kproc_infos");
}
processes = (struct kinfo_proc *)malloc(size);
if (sysctl(mib, 4, processes, &size, NULL, 0) == 0) {
size_t count = size / sizeof(struct kinfo_proc);
for (size_t i = 0; i < count; i++) {
struct kinfo_proc kproc = processes[i];
Proc::proc_info p{kproc.kp_proc.p_pid};
char fullname[PROC_PIDPATHINFO_MAXSIZE];
proc_pidpath(p.pid, fullname, sizeof(fullname));
p.cmd = std::string(fullname);
size_t lastSlash = p.cmd.find_last_of('/');
p.name = p.cmd.substr(lastSlash + 1);
p.ppid = kproc.kp_eproc.e_ppid;
p.p_nice = kproc.kp_proc.p_nice;
struct proc_taskinfo pti;
if (sizeof(pti) == proc_pidinfo(p.pid, PROC_PIDTASKINFO, 0, &pti, sizeof(pti))) {
p.threads = pti.pti_threadnum;
p.cpu_t = pti.pti_total_user + pti.pti_total_system;
p.cpu_c = (double)p.cpu_t / max(1.0, (uptime * Shared::clkTck) - p.cpu_s);
p.cpu_p = 0;
p.cpu_s = pti.pti_total_system;
}
struct passwd *pwd = getpwuid(kproc.kp_eproc.e_ucred.cr_uid);
p.user = pwd->pw_name;
procs->push_back(p);
}
}
}
return current_procs;
}
} // namespace Proc
namespace Tools {
double system_uptime() {
struct timeval ts, currTime;
std::size_t len = sizeof(ts);
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
if (sysctl(mib, 2, &ts, &len, NULL, 0) != -1) {
gettimeofday(&currTime, NULL);
return currTime.tv_sec - ts.tv_sec;
}
return 0.0;
}
} // namespace Tools