btop/src/btop_linux.cpp
2021-06-20 22:07:04 +02:00

411 lines
12 KiB
C++

/* Copyright 2021 Aristocratos (jakob@qvantnet.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
indent = tab
tab-size = 4
*/
#if defined(__linux__)
#include <string>
#include <vector>
#include <atomic>
#include <fstream>
#include <filesystem>
#include <ranges>
#include <list>
#include <robin_hood.h>
#include <cmath>
#include <iostream>
#include <cmath>
#include <unistd.h>
#include <btop_shared.hpp>
#include <btop_config.hpp>
#include <btop_tools.hpp>
using std::string, std::vector, std::ifstream, std::atomic, std::numeric_limits, std::streamsize,
std::round, std::string_literals::operator""s, robin_hood::unordered_flat_map;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------
namespace Tools {
double system_uptime(){
string upstr;
ifstream pread("/proc/uptime");
getline(pread, upstr, ' ');
pread.close();
return stod(upstr);
}
}
namespace Proc {
namespace {
struct p_cache {
string name, cmd, user;
uint64_t cpu_t = 0, cpu_s = 0;
string prefix = "";
size_t depth = 0;
bool collapsed = false;
};
unordered_flat_map<uint, p_cache> cache;
unordered_flat_map<string, string> uid_user;
fs::path passwd_path;
fs::file_time_type passwd_time;
uint counter = 0;
long page_size;
long clk_tck;
}
fs::path proc_path;
uint64_t old_cputimes = 0;
size_t numpids = 500;
atomic<bool> stop (false);
atomic<bool> collecting (false);
vector<string> sort_vector = {
"pid",
"name",
"command",
"threads",
"user",
"memory",
"cpu direct",
"cpu lazy",
};
//* Generate process tree list
void _tree_gen(proc_info& cur_proc, vector<proc_info>& in_procs, vector<proc_info>& out_procs, int cur_depth, bool collapsed, string& prefix){
auto cur_pos = out_procs.size();
if (!collapsed)
out_procs.push_back(cur_proc);
int children = 0;
for (auto& p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) {
children++;
if (collapsed) {
out_procs.back().cpu_p += p.cpu_p;
out_procs.back().mem += p.mem;
out_procs.back().threads += p.threads;
}
_tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cache.at(cur_proc.pid).collapsed), prefix);
}
if (collapsed) return;
if (out_procs.size() > cur_pos + 1 && !out_procs.back().prefix.ends_with("] ")) {
out_procs.back().prefix.resize(out_procs.back().prefix.size() - 8);
out_procs.back().prefix += " └─ ";
}
out_procs.at(cur_pos).prefix = ""s * cur_depth + (children > 0 ? (cache.at(cur_proc.pid).collapsed ? "[+] " : "[-] ") : prefix);
}
vector<proc_info> current_procs;
//* Collects and sorts process information from /proc, saves to and returns reference to Proc::current_procs;
vector<proc_info>& collect(){
atomic_wait_set(collecting);
auto& sorting = Config::getS("proc_sorting");
auto& reverse = Config::getB("proc_reversed");
auto& filter = Config::getS("proc_filter");
auto& per_core = Config::getB("proc_per_core");
auto& tree = Config::getB("proc_tree");
ifstream pread;
auto uptime = system_uptime();
vector<proc_info> procs;
vector<uint> pid_list;
procs.reserve((numpids + 10));
pid_list.reserve(numpids + 10);
int npids = 0;
int cmult = (per_core) ? Global::coreCount : 1;
(void)tree;
//* Update uid_user map if /etc/passwd changed since last run
if (!passwd_path.empty() && fs::last_write_time(passwd_path) != passwd_time) {
string r_uid, r_user;
passwd_time = fs::last_write_time(passwd_path);
uid_user.clear();
pread.open(passwd_path);
if (pread.good()) {
while (!pread.eof()){
getline(pread, r_user, ':');
pread.ignore(SSmax, ':');
getline(pread, r_uid, ':');
uid_user[r_uid] = r_user;
pread.ignore(SSmax, '\n');
}
}
pread.close();
}
//* Get cpu total times from /proc/stat
uint64_t cputimes = 0;
pread.open(proc_path / "stat");
if (pread.good()) {
pread.ignore(SSmax, ' ');
for (uint64_t times; pread >> times; cputimes += times);
pread.close();
}
else return current_procs;
//* Iterate over all pids in /proc
for (auto& d: fs::directory_iterator(proc_path)){
if (pread.is_open()) pread.close();
if (stop.load()) {
collecting.store(false);
stop.store(false);
return current_procs;
}
bool new_cache = false;
string pid_str = d.path().filename();
if (d.is_directory() && isdigit(pid_str[0])) {
npids++;
proc_info new_proc (stoul(pid_str));
pid_list.push_back(new_proc.pid);
//* Cache program name, command and username
if (!cache.contains(new_proc.pid)) {
string name, cmd, user;
new_cache = true;
pread.open(d.path() / "comm");
if (pread.good()) {
getline(pread, name);
pread.close();
}
else continue;
pread.open(d.path() / "cmdline");
if (pread.good()) {
string tmpstr = "";
while(getline(pread, tmpstr, '\0')) cmd += tmpstr + " ";
pread.close();
if (!cmd.empty()) cmd.pop_back();
}
else continue;
pread.open(d.path() / "status");
if (pread.good()) {
string uid;
while (!pread.eof()){
string line;
getline(pread, line, ':');
if (line == "Uid") {
pread.ignore();
getline(pread, uid, '\t');
break;
} else {
pread.ignore(SSmax, '\n');
}
}
pread.close();
user = (!uid.empty() && uid_user.contains(uid)) ? uid_user.at(uid) : uid;
}
else continue;
cache[new_proc.pid] = {name, cmd, user};
}
//* Match filter if defined
if (!filter.empty()
&& pid_str.find(filter) == string::npos
&& cache[new_proc.pid].name.find(filter) == string::npos
&& cache[new_proc.pid].cmd.find(filter) == string::npos
&& cache[new_proc.pid].user.find(filter) == string::npos) {
if (new_cache) cache.erase(new_proc.pid);
continue;
}
new_proc.name = cache[new_proc.pid].name;
new_proc.cmd = cache[new_proc.pid].cmd;
new_proc.user = cache[new_proc.pid].user;
//* Parse /proc/[pid]/stat
pread.open(d.path() / "stat");
if (pread.good()) {
string instr;
getline(pread, instr);
pread.close();
size_t s_pos = 0, c_pos = 0, s_count = 0;
uint64_t cpu_t = 0;
//? Skip pid and comm field and find comm fields closing ')'
s_pos = instr.find_last_of(')') + 2;
if (s_pos == string::npos) continue;
try {
do {
c_pos = instr.find(' ', s_pos);
if (c_pos == string::npos) break;
switch (s_count) {
case 0: { //? Process state
new_proc.state = instr[s_pos];
break;
}
case 1: { //? Process parent pid
new_proc.ppid = stoull(instr.substr(s_pos, c_pos - s_pos));
break;
}
case 11: { //? Process utime
cpu_t = stoull(instr.substr(s_pos, c_pos - s_pos));
break;
}
case 12: { //? Process stime
cpu_t += stoull(instr.substr(s_pos, c_pos - s_pos));
break;
}
case 16: { //? Process nice value
new_proc.p_nice = stoull(instr.substr(s_pos, c_pos - s_pos));
break;
}
case 17: { //? Process number of threads
new_proc.threads = stoull(instr.substr(s_pos, c_pos - s_pos));
break;
}
case 19: { //? Cache cpu seconds
if (new_cache) cache[new_proc.pid].cpu_s = stoull(instr.substr(s_pos, c_pos - s_pos));
break;
}
case 36: { //? CPU number last executed on
new_proc.cpu_n = stoull(instr.substr(s_pos, c_pos - s_pos));
break;
}
}
s_pos = c_pos + 1;
} while (s_count++ < 36);
}
catch (std::out_of_range&) {
continue;
}
if (s_count < 19) continue;
//? Process cpu usage since last update
new_proc.cpu_p = round(cmult * 1000 * (cpu_t - cache[new_proc.pid].cpu_t) / (cputimes - old_cputimes)) / 10.0;
//? Process cumulative cpu usage since process start
new_proc.cpu_c = ((double)cpu_t / clk_tck) / (uptime - (cache[new_proc.pid].cpu_s / clk_tck));
//? Update cache with latest cpu times
cache[new_proc.pid].cpu_t = cpu_t;
}
else continue;
//* Get RSS memory in bytes from /proc/[pid]/statm
pread.open(d.path() / "statm");
if (pread.good()) {
pread.ignore(SSmax, ' ');
pread >> new_proc.mem;
pread.close();
new_proc.mem *= page_size;
}
//? Push process to vector
procs.push_back(new_proc);
}
}
//* Sort processes
auto cmp = [&reverse](const auto &a, const auto &b) { return (reverse ? a < b : a > b); };
switch (v_index(sort_vector, sorting)) {
case 0: { rng::sort(procs, cmp, &proc_info::pid); break; }
case 1: { rng::sort(procs, cmp, &proc_info::name); break; }
case 2: { rng::sort(procs, cmp, &proc_info::cmd); break; }
case 3: { rng::sort(procs, cmp, &proc_info::threads); break; }
case 4: { rng::sort(procs, cmp, &proc_info::user); break; }
case 5: { rng::sort(procs, cmp, &proc_info::mem); break; }
case 6: { rng::sort(procs, cmp, &proc_info::cpu_p); break; }
case 7: { rng::sort(procs, cmp, &proc_info::cpu_c); break; }
}
//* When sorting with "cpu lazy" push processes over threshold cpu usage to the front regardless of cumulative usage
if (sorting == "cpu lazy" && !tree && !reverse) {
double max = 10.0, target = 30.0;
for (size_t i = 0, offset = 0; i < procs.size(); i++) {
if (i <= 5 && procs[i].cpu_p > max)
max = procs[i].cpu_p;
else if (i == 6)
target = (max > 30.0) ? max : 10.0;
if (i == offset && procs[i].cpu_p > 30.0)
offset++;
else if
(procs[i].cpu_p > target) rotate(procs.begin() + offset, procs.begin() + i, procs.begin() + i + 1);
}
}
//* Generate tree view if enabled
if (tree) {
vector<proc_info> tree_procs;
//? Stable sort to retain selected sorting among processes with the same parent
rng::stable_sort(procs, rng::less{}, &proc_info::ppid);
string prefix = " ├─ ";
for (auto& p : rng::equal_range(procs, procs.at(0).ppid, rng::less{}, &proc_info::ppid)) {
_tree_gen(p, procs, tree_procs, 0, cache.at(p.pid).collapsed, prefix);
}
procs.swap(tree_procs);
}
//* Clear dead processes from cache at a regular interval
if (++counter >= 10000 || ((int)cache.size() > npids + 100)) {
counter = 0;
unordered_flat_map<uint, p_cache> r_cache;
r_cache.reserve(pid_list.size());
rng::for_each(pid_list, [&r_cache](const auto &p){ if (cache.contains(p)) r_cache[p] = cache.at(p); });
cache.swap(r_cache);
}
old_cputimes = cputimes;
current_procs.swap(procs);
numpids = npids;
collecting.store(false);
return current_procs;
}
//* Initialize needed variables for collect
void init(){
proc_path = (fs::is_directory(fs::path("/proc")) && access("/proc", R_OK) != -1) ? "/proc" : "";
if (proc_path.empty()) {
string errmsg = "Proc filesystem not found or no permission to read from it!";
Logger::error(errmsg);
std::cout << "ERROR: " << errmsg << std::endl;
exit(1);
}
passwd_path = (access("/etc/passwd", R_OK) != -1) ? fs::path("/etc/passwd") : passwd_path;
if (passwd_path.empty()) Logger::warning("Could not read /etc/passwd, will show UID instead of username.");
page_size = sysconf(_SC_PAGE_SIZE);
if (page_size <= 0) {
page_size = 4096;
Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
}
clk_tck = sysconf(_SC_CLK_TCK);
if (clk_tck <= 0) {
clk_tck = 100;
Logger::warning("Could not get system clocks per second. Defaulting to 100, processes cpu usage might be incorrect.");
}
}
}
#endif