/* Copyright 2021 Aristocratos (jakob@qvantnet.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. indent = tab tab-size = 4 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using std::clamp, std::string_literals::operator""s, std::cmp_equal, std::cmp_less, std::cmp_greater; using std::ifstream, std::numeric_limits, std::streamsize, std::round, std::max, std::min; namespace fs = std::filesystem; namespace rng = std::ranges; using namespace Tools; //? --------------------------------------------------- FUNCTIONS ----------------------------------------------------- namespace Cpu { vector core_old_totals; vector core_old_idles; vector available_fields = {"total"}; vector available_sensors = {"Auto"}; cpu_info current_cpu; bool got_sensors = false, cpu_temp_only = false; //* Populate found_sensors map bool get_sensors(); //* Get current cpu clock speed string get_cpuHz(); //* Search /proc/cpuinfo for a cpu name string get_cpuName(); struct Sensor { fs::path path; string label; int64_t temp = 0; int64_t high = 0; int64_t crit = 0; }; string cpu_sensor; vector core_sensors; unordered_flat_map core_mapping; } // namespace Cpu namespace Mem { double old_uptime; std::vector zpools; void get_zpools(); } namespace Shared { fs::path passwd_path; uint64_t totalMem; long pageSize, clkTck, coreCount, physicalCoreCount, arg_max; int totalMem_len; long bootTime; void init() { //? Shared global variables init int mib[2]; mib[0] = CTL_HW; mib[1] = HW_NCPU; int ncpu; size_t len = sizeof(ncpu); if (sysctl(mib, 2, &ncpu, &len, NULL, 0) == -1) { Logger::warning("Could not determine number of cores, defaulting to 1."); } else { coreCount = ncpu; } pageSize = sysconf(_SC_PAGE_SIZE); if (pageSize <= 0) { pageSize = 4096; Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect."); } clkTck = sysconf(_SC_CLK_TCK); if (clkTck <= 0) { clkTck = 100; Logger::warning("Could not get system clock ticks per second. Defaulting to 100, processes cpu usage might be incorrect."); } int64_t memsize = 0; size_t size = sizeof(memsize); if (sysctlbyname("hw.physmem", &memsize, &size, NULL, 0) < 0) { Logger::warning("Could not get memory size"); } totalMem = memsize; struct timeval result; size = sizeof(result); if (sysctlbyname("kern.boottime", &result, &size, NULL, 0) < 0) { Logger::warning("Could not get boot time"); } else { bootTime = result.tv_sec; } //* Get maximum length of process arguments arg_max = sysconf(_SC_ARG_MAX); //? Init for namespace Cpu Cpu::current_cpu.core_percent.insert(Cpu::current_cpu.core_percent.begin(), Shared::coreCount, {}); Cpu::current_cpu.temp.insert(Cpu::current_cpu.temp.begin(), Shared::coreCount + 1, {}); Cpu::core_old_totals.insert(Cpu::core_old_totals.begin(), Shared::coreCount, 0); Cpu::core_old_idles.insert(Cpu::core_old_idles.begin(), Shared::coreCount, 0); Cpu::collect(); for (auto &[field, vec] : Cpu::current_cpu.cpu_percent) { if (not vec.empty() and not v_contains(Cpu::available_fields, field)) Cpu::available_fields.push_back(field); } Cpu::cpuName = Cpu::get_cpuName(); Cpu::got_sensors = Cpu::get_sensors(); Cpu::core_mapping = Cpu::get_core_mapping(); //? Init for namespace Mem Mem::old_uptime = system_uptime(); Mem::collect(); Mem::get_zpools(); } } // namespace Shared namespace Cpu { string cpuName; string cpuHz; bool has_battery = true; tuple current_bat; const array time_names = {"user", "nice", "system", "idle"}; unordered_flat_map cpu_old = { {"totals", 0}, {"idles", 0}, {"user", 0}, {"nice", 0}, {"system", 0}, {"idle", 0} }; string get_cpuName() { string name; char buffer[1024]; size_t size = sizeof(buffer); if (sysctlbyname("hw.model", &buffer, &size, NULL, 0) < 0) { Logger::error("Failed to get CPU name"); return name; } name = string(buffer); auto name_vec = ssplit(name); if ((s_contains(name, "Xeon"s) or v_contains(name_vec, "Duo"s)) and v_contains(name_vec, "CPU"s)) { auto cpu_pos = v_index(name_vec, "CPU"s); if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')')) name = name_vec.at(cpu_pos + 1); else name.clear(); } else if (v_contains(name_vec, "Ryzen"s)) { auto ryz_pos = v_index(name_vec, "Ryzen"s); name = "Ryzen" + (ryz_pos < name_vec.size() - 1 ? ' ' + name_vec.at(ryz_pos + 1) : "") + (ryz_pos < name_vec.size() - 2 ? ' ' + name_vec.at(ryz_pos + 2) : ""); } else if (s_contains(name, "Intel"s) and v_contains(name_vec, "CPU"s)) { auto cpu_pos = v_index(name_vec, "CPU"s); if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')') and name_vec.at(cpu_pos + 1) != "@") name = name_vec.at(cpu_pos + 1); else name.clear(); } else name.clear(); if (name.empty() and not name_vec.empty()) { for (const auto &n : name_vec) { if (n == "@") break; name += n + ' '; } name.pop_back(); for (const auto ® : {regex("Processor"), regex("CPU"), regex("\\(R\\)"), regex("\\(TM\\)"), regex("Intel"), regex("AMD"), regex("Core"), regex("\\d?\\.?\\d+[mMgG][hH][zZ]")}) { name = std::regex_replace(name, reg, ""); } name = trim(name); } return name; } bool get_sensors() { got_sensors = false; if (Config::getB("show_coretemp") and Config::getB("check_temp")) { int32_t temp; size_t size = sizeof(temp); if (sysctlbyname("dev.cpu.0.temperature", &temp, &size, NULL, 0) < 0) { Logger::warning("Could not get temp sensor - maybe you need to load the coretemp module"); } else { got_sensors = true; int temp; size_t size = sizeof(temp); sysctlbyname("dev.cpu.0.coretemp.tjmax", &temp, &size, NULL, 0); //asuming the max temp is same for all cores temp = (temp - 2732) / 10; // since it's an int, it's multiplied by 10, and offset to absolute zero... current_cpu.temp_max = temp; } } return got_sensors; } void update_sensors() { int temp; size_t size = sizeof(temp); sysctlbyname("hw.acpi.thermal.tz0.temperature", &temp, &size, NULL, 0); temp = (temp - 2732) / 10; // since it's an int, it's multiplied by 10, and offset to absolute zero... current_cpu.temp.at(0).push_back(temp); if (current_cpu.temp.at(0).size() > 20) current_cpu.temp.at(0).pop_front(); for (int i = 0; i < Shared::coreCount; i++) { string s = "dev.cpu." + std::to_string(i) + ".temperature"; if (sysctlbyname(s.c_str(), &temp, &size, NULL, 0) < 0) { Logger::warning("Could not get temp sensor - maybe you need to load the coretemp module"); } else { temp = (temp - 2732) / 10; if (cmp_less(i + 1, current_cpu.temp.size())) { current_cpu.temp.at(i + 1).push_back(temp); if (current_cpu.temp.at(i + 1).size() > 20) current_cpu.temp.at(i + 1).pop_front(); } } } } string get_cpuHz() { unsigned int freq = 1; size_t size = sizeof(freq); if (sysctlbyname("dev.cpu.0.freq", &freq, &size, NULL, 0) < 0) { return ""; } return std::to_string(freq / 1000.0 ).substr(0, 3); // seems to be in MHz } auto get_core_mapping() -> unordered_flat_map { unordered_flat_map core_map; if (cpu_temp_only) return core_map; for (long i = 0; i < Shared::coreCount; i++) { core_map[i] = i; } //? If core mapping from cpuinfo was incomplete try to guess remainder, if missing completely, map 0-0 1-1 2-2 etc. if (cmp_less(core_map.size(), Shared::coreCount)) { if (Shared::coreCount % 2 == 0 and (long) core_map.size() == Shared::coreCount / 2) { for (int i = 0, n = 0; i < Shared::coreCount / 2; i++) { if (std::cmp_greater_equal(n, core_sensors.size())) n = 0; core_map[Shared::coreCount / 2 + i] = n++; } } else { core_map.clear(); for (int i = 0, n = 0; i < Shared::coreCount; i++) { if (std::cmp_greater_equal(n, core_sensors.size())) n = 0; core_map[i] = n++; } } } //? Apply user set custom mapping if any const auto &custom_map = Config::getS("cpu_core_map"); if (not custom_map.empty()) { try { for (const auto &split : ssplit(custom_map)) { const auto vals = ssplit(split, ':'); if (vals.size() != 2) continue; int change_id = std::stoi(vals.at(0)); int new_id = std::stoi(vals.at(1)); if (not core_map.contains(change_id) or cmp_greater(new_id, core_sensors.size())) continue; core_map.at(change_id) = new_id; } } catch (...) { } } return core_map; } auto get_battery() -> tuple { if (not has_battery) return {0, 0, ""}; long seconds = -1; uint32_t percent = -1; size_t size = sizeof(percent); string status = "discharging"; if (sysctlbyname("hw.acpi.battery.life", &percent, &size, NULL, 0) < 0) { has_battery = false; } else { has_battery = true; size_t size = sizeof(seconds); if (sysctlbyname("hw.acpi.battery.time", &seconds, &size, NULL, 0) < 0) { seconds = 0; } int state; size = sizeof(state); if (sysctlbyname("hw.acpi.battery.state", &state, &size, NULL, 0) < 0) { status = "unknown"; } else { if (state == 2) { status = "charging"; } } if (percent == 100) { status = "full"; } } return {percent, seconds, status}; } auto collect(const bool no_update) -> cpu_info & { if (Runner::stopping or (no_update and not current_cpu.cpu_percent.at("total").empty())) return current_cpu; auto &cpu = current_cpu; double avg[3]; if (getloadavg(avg, sizeof(avg)) < 0) { Logger::error("failed to get load averages"); } cpu.load_avg = { (float)avg[0], (float)avg[1], (float)avg[2]}; vector> cpu_time(Shared::coreCount); size_t size = sizeof(long) * CPUSTATES * Shared::coreCount; if (sysctlbyname("kern.cp_times", &cpu_time[0], &size, NULL, 0) == -1) { Logger::error("failed to get CPU times"); } long long global_totals = 0; long long global_idles = 0; vector times_summed = {0, 0, 0, 0}; for (long i = 0; i < Shared::coreCount; i++) { vector times; //? 0=user, 1=nice, 2=system, 3=idle for (int x = 0; const unsigned int c_state : {CP_USER, CP_NICE, CP_SYS, CP_IDLE}) { auto val = cpu_time[i][c_state]; times.push_back(val); times_summed.at(x++) += val; } try { //? All values const long long totals = std::accumulate(times.begin(), times.end(), 0ll); //? Idle time const long long idles = times.at(3); global_totals += totals; global_idles += idles; //? Calculate cpu total for each core if (i > Shared::coreCount) break; const long long calc_totals = max(0ll, totals - core_old_totals.at(i)); const long long calc_idles = max(0ll, idles - core_old_idles.at(i)); core_old_totals.at(i) = totals; core_old_idles.at(i) = idles; cpu.core_percent.at(i).push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll)); //? Reduce size if there are more values than needed for graph if (cpu.core_percent.at(i).size() > 40) cpu.core_percent.at(i).pop_front(); } catch (const std::exception &e) { Logger::error("Cpu::collect() : " + (string)e.what()); throw std::runtime_error("collect() : " + (string)e.what()); } } const long long calc_totals = max(1ll, global_totals - cpu_old.at("totals")); const long long calc_idles = max(1ll, global_idles - cpu_old.at("idles")); //? Populate cpu.cpu_percent with all fields from syscall for (int ii = 0; const auto &val : times_summed) { cpu.cpu_percent.at(time_names.at(ii)).push_back(clamp((long long)round((double)(val - cpu_old.at(time_names.at(ii))) * 100 / calc_totals), 0ll, 100ll)); cpu_old.at(time_names.at(ii)) = val; //? Reduce size if there are more values than needed for graph while (cmp_greater(cpu.cpu_percent.at(time_names.at(ii)).size(), width * 2)) cpu.cpu_percent.at(time_names.at(ii)).pop_front(); ii++; } cpu_old.at("totals") = global_totals; cpu_old.at("idles") = global_idles; //? Total usage of cpu cpu.cpu_percent.at("total").push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll)); //? Reduce size if there are more values than needed for graph while (cmp_greater(cpu.cpu_percent.at("total").size(), width * 2)) cpu.cpu_percent.at("total").pop_front(); if (Config::getB("show_cpu_freq")) { auto hz = get_cpuHz(); if (hz != "") { cpuHz = hz; } } if (Config::getB("check_temp") and got_sensors) update_sensors(); if (Config::getB("show_battery") and has_battery) current_bat = get_battery(); return cpu; } } // namespace Cpu namespace Mem { bool has_swap = false; vector fstab; fs::file_time_type fstab_time; int disk_ios = 0; vector last_found; mem_info current_mem{}; uint64_t get_totalMem() { return Shared::totalMem; } void assign_values(struct disk_info& disk, int64_t readBytes, int64_t writeBytes) { disk_ios++; if (disk.io_read.empty()) { disk.io_read.push_back(0); } else { disk.io_read.push_back(max((int64_t)0, (readBytes - disk.old_io.at(0)))); } disk.old_io.at(0) = readBytes; while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front(); if (disk.io_write.empty()) { disk.io_write.push_back(0); } else { disk.io_write.push_back(max((int64_t)0, (writeBytes - disk.old_io.at(1)))); } disk.old_io.at(1) = writeBytes; while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front(); // no io times - need to push something anyway or we'll get an ABORT if (disk.io_activity.empty()) disk.io_activity.push_back(0); else disk.io_activity.push_back(clamp((long)round((double)(disk.io_write.back() + disk.io_read.back()) / (1 << 20)), 0l, 100l)); while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front(); } class PipeWrapper { public: PipeWrapper(const char *file, const char *mode) {fd = popen(file, mode);} virtual ~PipeWrapper() {if (fd) pclose(fd);} auto operator()() -> FILE* { return fd;}; private: FILE *fd; }; // find all zpools in the system. Do this only at startup. void get_zpools() { PipeWrapper poolPipe = PipeWrapper("zpool list -H -o name", "r"); while (not std::feof(poolPipe())) { char poolName[512]; size_t len = 512; if (fgets(poolName, len, poolPipe())) { poolName[strcspn(poolName, "\n")] = 0; Logger::debug("zpool found: " + string(poolName)); Mem::zpools.push_back(poolName); } } } void collect_disk(unordered_flat_map &disks, unordered_flat_map &mapping) { // this bit is for 'regular' mounts static struct statinfo cur; long double etime = 0; uint64_t total_bytes_read; uint64_t total_bytes_write; static std::unique_ptr curDevInfo (reinterpret_cast(std::calloc(1, sizeof(struct devinfo))), std::free); cur.dinfo = curDevInfo.get(); if (devstat_getdevs(NULL, &cur) != -1) { for (int i = 0; i < cur.dinfo->numdevs; i++) { auto d = cur.dinfo->devices[i]; string devStatName = "/dev/" + string(d.device_name) + std::to_string(d.unit_number); for (auto& [ignored, disk] : disks) { // find matching mountpoints - could be multiple as d.device_name is only ada (and d.unit_number is the device number), while the disk.dev is like /dev/ada0s1 if (disk.dev.string().rfind(devStatName, 0) == 0) { devstat_compute_statistics(&d, NULL, etime, DSM_TOTAL_BYTES_READ, &total_bytes_read, DSM_TOTAL_BYTES_WRITE, &total_bytes_write, DSM_NONE); assign_values(disk, total_bytes_read, total_bytes_write); string mountpoint = mapping.at(disk.dev); Logger::debug("dev " + devStatName + " -> " + mountpoint + " read=" + std::to_string(total_bytes_read) + " write=" + std::to_string(total_bytes_write)); } } } Logger::debug(""); } // this code is for ZFS mounts for (string poolName : Mem::zpools) { char sysCtl[1024]; snprintf(sysCtl, sizeof(sysCtl), "sysctl kstat.zfs.%s.dataset | egrep \'dataset_name|nread|nwritten\'", poolName.c_str()); PipeWrapper f = PipeWrapper(sysCtl, "r"); if (f()) { char buf[512]; size_t len = 512; while (not std::feof(f())) { uint64_t nread, nwritten; if (fgets(buf, len, f())) { char *name = std::strtok(buf, ": \n"); char *value = std::strtok(NULL, ": \n"); if (string(name).find("dataset_name") != string::npos) { // create entry if datasetname matches with anything in mapping // relies on the fact that the dataset name is last value in the list // alternatively you could parse the objset-0x... when this changes, you have a new entry string datasetname = string(value);// this is the zfs volume, like 'zroot/usr/home' -> this maps onto the device we get back from getmntinfo(3) if (mapping.contains(datasetname)) { string mountpoint = mapping.at(datasetname); if (disks.contains(mountpoint)) { auto& disk = disks.at(mountpoint); assign_values(disk, nread, nwritten); } } } else if (string(name).find("nread") != string::npos) { nread = atoll(value); } else if (string(name).find("nwritten") != string::npos) { nwritten = atoll(value); } } } } } } auto collect(const bool no_update) -> mem_info & { if (Runner::stopping or (no_update and not current_mem.percent.at("used").empty())) return current_mem; auto &show_swap = Config::getB("show_swap"); auto &show_disks = Config::getB("show_disks"); auto &swap_disk = Config::getB("swap_disk"); auto &mem = current_mem; static const bool snapped = (getenv("BTOP_SNAPPED") != NULL); int mib[4]; u_int memActive, memWire, cachedMem, freeMem; size_t len; len = 4; sysctlnametomib("vm.stats.vm.v_active_count", mib, &len); len = sizeof(memActive); sysctl(mib, 4, &(memActive), &len, NULL, 0); memActive *= Shared::pageSize; len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", mib, &len); len = sizeof(memWire); sysctl(mib, 4, &(memWire), &len, NULL, 0); memWire *= Shared::pageSize; mem.stats.at("used") = memWire + memActive; mem.stats.at("available") = Shared::totalMem - memActive - memWire; len = sizeof(cachedMem); len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", mib, &len); sysctl(mib, 4, &(cachedMem), &len, NULL, 0); cachedMem *= Shared::pageSize; mem.stats.at("cached") = cachedMem; len = sizeof(freeMem); len = 4; sysctlnametomib("vm.stats.vm.v_free_count", mib, &len); sysctl(mib, 4, &(freeMem), &len, NULL, 0); freeMem *= Shared::pageSize; mem.stats.at("free") = freeMem; if (show_swap and mem.stats.at("swap_total") > 0) { for (const auto &name : swap_names) { mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / mem.stats.at("swap_total"))); while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front(); } has_swap = true; } else has_swap = false; //? Calculate percentages for (const auto &name : mem_names) { mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / Shared::totalMem)); while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front(); } if (show_disks) { unordered_flat_map mapping; // keep mapping from device -> mountpoint, since IOKit doesn't give us the mountpoint double uptime = system_uptime(); auto &disks_filter = Config::getS("disks_filter"); bool filter_exclude = false; // auto &only_physical = Config::getB("only_physical"); auto &disks = mem.disks; vector filter; if (not disks_filter.empty()) { filter = ssplit(disks_filter); if (filter.at(0).starts_with("exclude=")) { filter_exclude = true; filter.at(0) = filter.at(0).substr(8); } } struct statfs *stfs; int count = getmntinfo(&stfs, MNT_WAIT); vector found; found.reserve(last_found.size()); for (int i = 0; i < count; i++) { auto fstype = string(stfs[i].f_fstypename); if (fstype == "autofs" || fstype == "devfs" || fstype == "linprocfs" || fstype == "procfs" || fstype == "tmpfs" || fstype == "linsysfs" || fstype == "fdesckfs") { // in memory filesystems -> not useful to show continue; } std::error_code ec; string mountpoint = stfs[i].f_mntonname; string dev = stfs[i].f_mntfromname; mapping[dev] = mountpoint; //? Match filter if not empty if (not filter.empty()) { bool match = v_contains(filter, mountpoint); if ((filter_exclude and match) or (not filter_exclude and not match)) continue; } found.push_back(mountpoint); if (not disks.contains(mountpoint)) { disks[mountpoint] = disk_info{fs::canonical(dev, ec), fs::path(mountpoint).filename()}; if (disks.at(mountpoint).dev.empty()) disks.at(mountpoint).dev = dev; if (disks.at(mountpoint).name.empty()) disks.at(mountpoint).name = (mountpoint == "/" ? "root" : mountpoint); } if (not v_contains(last_found, mountpoint)) redraw = true; disks.at(mountpoint).free = stfs[i].f_bfree; disks.at(mountpoint).total = stfs[i].f_iosize; } //? Remove disks no longer mounted or filtered out if (swap_disk and has_swap) found.push_back("swap"); for (auto it = disks.begin(); it != disks.end();) { if (not v_contains(found, it->first)) it = disks.erase(it); else it++; } if (found.size() != last_found.size()) redraw = true; last_found = std::move(found); //? Get disk/partition stats for (auto &[mountpoint, disk] : disks) { if (std::error_code ec; not fs::exists(mountpoint, ec)) continue; struct statvfs vfs; if (statvfs(mountpoint.c_str(), &vfs) < 0) { Logger::warning("Failed to get disk/partition stats with statvfs() for: " + mountpoint); continue; } disk.total = vfs.f_blocks * vfs.f_frsize; disk.free = vfs.f_bfree * vfs.f_frsize; disk.used = disk.total - disk.free; disk.used_percent = round((double)disk.used * 100 / disk.total); disk.free_percent = 100 - disk.used_percent; } //? Setup disks order in UI and add swap if enabled mem.disks_order.clear(); if (snapped and disks.contains("/mnt")) mem.disks_order.push_back("/mnt"); else if (disks.contains("/")) mem.disks_order.push_back("/"); if (swap_disk and has_swap) { mem.disks_order.push_back("swap"); if (not disks.contains("swap")) disks["swap"] = {"", "swap"}; disks.at("swap").total = mem.stats.at("swap_total"); disks.at("swap").used = mem.stats.at("swap_used"); disks.at("swap").free = mem.stats.at("swap_free"); disks.at("swap").used_percent = mem.percent.at("swap_used").back(); disks.at("swap").free_percent = mem.percent.at("swap_free").back(); } for (const auto &name : last_found) if (not is_in(name, "/", "swap", "/dev")) mem.disks_order.push_back(name); disk_ios = 0; collect_disk(disks, mapping); old_uptime = uptime; } return mem; } } // namespace Mem namespace Net { unordered_flat_map current_net; net_info empty_net = {}; vector interfaces; string selected_iface; int errors = 0; unordered_flat_map graph_max = {{"download", {}}, {"upload", {}}}; unordered_flat_map> max_count = {{"download", {}}, {"upload", {}}}; bool rescale = true; uint64_t timestamp = 0; //* RAII wrapper for getifaddrs class getifaddr_wrapper { struct ifaddrs *ifaddr; public: int status; getifaddr_wrapper() { status = getifaddrs(&ifaddr); } ~getifaddr_wrapper() { freeifaddrs(ifaddr); } auto operator()() -> struct ifaddrs * { return ifaddr; } }; auto collect(const bool no_update) -> net_info & { auto &net = current_net; auto &config_iface = Config::getS("net_iface"); auto &net_sync = Config::getB("net_sync"); auto &net_auto = Config::getB("net_auto"); auto new_timestamp = time_ms(); if (not no_update and errors < 3) { //? Get interface list using getifaddrs() wrapper getifaddr_wrapper if_wrap{}; if (if_wrap.status != 0) { errors++; Logger::error("Net::collect() -> getifaddrs() failed with id " + to_string(if_wrap.status)); redraw = true; return empty_net; } int family = 0; char ip[NI_MAXHOST]; interfaces.clear(); string ipv4, ipv6; //? Iteration over all items in getifaddrs() list for (auto *ifa = if_wrap(); ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; family = ifa->ifa_addr->sa_family; const auto &iface = ifa->ifa_name; //? Get IPv4 address if (family == AF_INET) { if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr), ip, NI_MAXHOST, NULL, 0, NI_NUMERICHOST) == 0) net[iface].ipv4 = ip; } //? Get IPv6 address // else if (family == AF_INET6) { // if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in6), ip, NI_MAXHOST, NULL, 0, NI_NUMERICHOST) == 0) // net[iface].ipv6 = ip; // } //? Update available interfaces vector and get status of interface if (not v_contains(interfaces, iface)) { interfaces.push_back(iface); net[iface].connected = (ifa->ifa_flags & IFF_RUNNING); } } unordered_flat_map> ifstats; int mib[] = {CTL_NET, PF_ROUTE, 0, 0, NET_RT_IFLIST, 0}; size_t len; if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0) { Logger::error("failed getting network interfaces"); } else { std::unique_ptr buf(new char[len]); if (sysctl(mib, 6, buf.get(), &len, NULL, 0) < 0) { Logger::error("failed getting network interfaces"); } else { char *lim = buf.get() + len; char *next = NULL; for (next = buf.get(); next < lim;) { struct if_msghdr *ifm = (struct if_msghdr *)next; next += ifm->ifm_msglen; struct if_data ifm_data = ifm->ifm_data; if (ifm->ifm_addrs & RTA_IFP) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)(ifm + 1); char iface[32]; strncpy(iface, sdl->sdl_data, sdl->sdl_nlen); iface[sdl->sdl_nlen] = 0; ifstats[iface] = std::tuple(ifm_data.ifi_ibytes, ifm_data.ifi_obytes); } } } } //? Get total recieved and transmitted bytes + device address if no ip was found for (const auto &iface : interfaces) { for (const string dir : {"download", "upload"}) { auto &saved_stat = net.at(iface).stat.at(dir); auto &bandwidth = net.at(iface).bandwidth.at(dir); auto dirval = dir == "download" ? std::get<0>(ifstats[iface]) : std::get<1>(ifstats[iface]); uint64_t val = saved_stat.last; try { val = max(dirval, val); } catch (const std::invalid_argument &) { } catch (const std::out_of_range &) { } //? Update speed, total and top values saved_stat.speed = round((double)(val - saved_stat.last) / ((double)(new_timestamp - timestamp) / 1000)); if (saved_stat.speed > saved_stat.top) saved_stat.top = saved_stat.speed; if (saved_stat.offset > val) saved_stat.offset = 0; saved_stat.total = val - saved_stat.offset; saved_stat.last = val; //? Add values to graph bandwidth.push_back(saved_stat.speed); while (cmp_greater(bandwidth.size(), width * 2)) bandwidth.pop_front(); //? Set counters for auto scaling if (net_auto and selected_iface == iface) { if (saved_stat.speed > graph_max[dir]) { ++max_count[dir][0]; if (max_count[dir][1] > 0) --max_count[dir][1]; } else if (graph_max[dir] > 10 << 10 and saved_stat.speed < graph_max[dir] / 10) { ++max_count[dir][1]; if (max_count[dir][0] > 0) --max_count[dir][0]; } } } } //? Clean up net map if needed if (net.size() > interfaces.size()) { for (auto it = net.begin(); it != net.end();) { if (not v_contains(interfaces, it->first)) it = net.erase(it); else it++; } net.compact(); } timestamp = new_timestamp; } //? Return empty net_info struct if no interfaces was found if (net.empty()) return empty_net; //? Find an interface to display if selected isn't set or valid if (selected_iface.empty() or not v_contains(interfaces, selected_iface)) { max_count["download"][0] = max_count["download"][1] = max_count["upload"][0] = max_count["upload"][1] = 0; redraw = true; if (net_auto) rescale = true; if (not config_iface.empty() and v_contains(interfaces, config_iface)) selected_iface = config_iface; else { //? Sort interfaces by total upload + download bytes auto sorted_interfaces = interfaces; rng::sort(sorted_interfaces, [&](const auto &a, const auto &b) { return cmp_greater(net.at(a).stat["download"].total + net.at(a).stat["upload"].total, net.at(b).stat["download"].total + net.at(b).stat["upload"].total); }); selected_iface.clear(); //? Try to set to a connected interface for (const auto &iface : sorted_interfaces) { if (net.at(iface).connected) selected_iface = iface; break; } //? If no interface is connected set to first available if (selected_iface.empty() and not sorted_interfaces.empty()) selected_iface = sorted_interfaces.at(0); else if (sorted_interfaces.empty()) return empty_net; } } //? Calculate max scale for graphs if needed if (net_auto) { bool sync = false; for (const auto &dir : {"download", "upload"}) { for (const auto &sel : {0, 1}) { if (rescale or max_count[dir][sel] >= 5) { const uint64_t avg_speed = (net[selected_iface].bandwidth[dir].size() > 5 ? std::accumulate(net.at(selected_iface).bandwidth.at(dir).rbegin(), net.at(selected_iface).bandwidth.at(dir).rbegin() + 5, 0) / 5 : net[selected_iface].stat[dir].speed); graph_max[dir] = max(uint64_t(avg_speed * (sel == 0 ? 1.3 : 3.0)), (uint64_t)10 << 10); max_count[dir][0] = max_count[dir][1] = 0; redraw = true; if (net_sync) sync = true; break; } } //? Sync download/upload graphs if enabled if (sync) { const auto other = (string(dir) == "upload" ? "download" : "upload"); graph_max[other] = graph_max[dir]; max_count[other][0] = max_count[other][1] = 0; break; } } } rescale = false; return net.at(selected_iface); } } // namespace Net namespace Proc { vector current_procs; unordered_flat_map uid_user; string current_sort; string current_filter; bool current_rev = false; fs::file_time_type passwd_time; uint64_t cputimes; int collapse = -1, expand = -1; uint64_t old_cputimes = 0; atomic numpids = 0; int filter_found = 0; detail_container detailed; //* Generate process tree list void _tree_gen(proc_info &cur_proc, vector &in_procs, vector> &out_procs, int cur_depth, const bool collapsed, const string &filter, bool found = false, const bool no_update = false, const bool should_filter = false) { auto cur_pos = out_procs.size(); bool filtering = false; //? If filtering, include children of matching processes if (not found and (should_filter or not filter.empty())) { if (not s_contains(std::to_string(cur_proc.pid), filter) and not s_contains(cur_proc.name, filter) and not s_contains(cur_proc.cmd, filter) and not s_contains(cur_proc.user, filter)) { filtering = true; cur_proc.filtered = true; filter_found++; } else { found = true; cur_depth = 0; } } else if (cur_proc.filtered) cur_proc.filtered = false; //? Set tree index position for process if not filtered out or currently in a collapsed sub-tree if (not collapsed and not filtering) { out_procs.push_back(std::ref(cur_proc)); cur_proc.tree_index = out_procs.size() - 1; //? Try to find name of the binary file and append to program name if not the same if (cur_proc.short_cmd.empty() and not cur_proc.cmd.empty()) { std::string_view cmd_view = cur_proc.cmd; cmd_view = cmd_view.substr((size_t)0, min(cmd_view.find(' '), cmd_view.size())); cmd_view = cmd_view.substr(min(cmd_view.find_last_of('/') + 1, cmd_view.size())); cur_proc.short_cmd = (string)cmd_view; } } else { cur_proc.tree_index = in_procs.size(); } //? Recursive iteration over all children int children = 0; for (auto &p : rng::equal_range(in_procs, cur_proc.pid, rng::less{}, &proc_info::ppid)) { if (not no_update and not filtering and (collapsed or cur_proc.collapsed)) { out_procs.back().get().cpu_p += p.cpu_p; out_procs.back().get().mem += p.mem; out_procs.back().get().threads += p.threads; filter_found++; } if (collapsed and not filtering) { cur_proc.filtered = true; } else children++; _tree_gen(p, in_procs, out_procs, cur_depth + 1, (collapsed ? true : cur_proc.collapsed), filter, found, no_update, should_filter); } if (collapsed or filtering) return; //? Add tree terminator symbol if it's the last child in a sub-tree if (out_procs.size() > cur_pos + 1 and not out_procs.back().get().prefix.ends_with("]─")) out_procs.back().get().prefix.replace(out_procs.back().get().prefix.size() - 8, 8, " └─ "); //? Add collapse/expand symbols if process have any children out_procs.at(cur_pos).get().prefix = " │ "s * cur_depth + (children > 0 ? (cur_proc.collapsed ? "[+]─" : "[-]─") : " ├─ "); } string get_status(char s) { if (s & SRUN) return "Running"; if (s & SSLEEP) return "Sleeping"; if (s & SIDL) return "Idle"; if (s & SSTOP) return "Stopped"; if (s & SZOMB) return "Zombie"; return "Unknown"; } //* Get detailed info for selected process void _collect_details(const size_t pid, vector &procs) { if (pid != detailed.last_pid) { detailed = {}; detailed.last_pid = pid; detailed.skip_smaps = not Config::getB("proc_info_smaps"); } //? Copy proc_info for process from proc vector auto p_info = rng::find(procs, pid, &proc_info::pid); detailed.entry = *p_info; //? Update cpu percent deque for process cpu graph if (not Config::getB("proc_per_core")) detailed.entry.cpu_p *= Shared::coreCount; detailed.cpu_percent.push_back(clamp((long long)round(detailed.entry.cpu_p), 0ll, 100ll)); while (cmp_greater(detailed.cpu_percent.size(), width)) detailed.cpu_percent.pop_front(); //? Process runtime : current time - start time (both in unix time - seconds since epoch) struct timeval currentTime; gettimeofday(¤tTime, NULL); detailed.elapsed = sec_to_dhms(currentTime.tv_sec - detailed.entry.cpu_s); // only interested in second granularity, so ignoring tc_usec if (detailed.elapsed.size() > 8) detailed.elapsed.resize(detailed.elapsed.size() - 3); //? Get parent process name if (detailed.parent.empty()) { auto p_entry = rng::find(procs, detailed.entry.ppid, &proc_info::pid); if (p_entry != procs.end()) detailed.parent = p_entry->name; } //? Expand process status from single char to explanative string detailed.status = get_status(detailed.entry.state); detailed.mem_bytes.push_back(detailed.entry.mem); detailed.memory = floating_humanizer(detailed.entry.mem); if (detailed.first_mem == -1 or detailed.first_mem < detailed.mem_bytes.back() / 2 or detailed.first_mem > detailed.mem_bytes.back() * 4) { detailed.first_mem = min((uint64_t)detailed.mem_bytes.back() * 2, Mem::get_totalMem()); redraw = true; } while (cmp_greater(detailed.mem_bytes.size(), width)) detailed.mem_bytes.pop_front(); // rusage_info_current rusage; // if (proc_pid_rusage(pid, RUSAGE_INFO_CURRENT, (void **)&rusage) == 0) { // // this fails for processes we don't own - same as in Linux // detailed.io_read = floating_humanizer(rusage.ri_diskio_bytesread); // detailed.io_write = floating_humanizer(rusage.ri_diskio_byteswritten); // } } //* RAII wrapper for kvm_openfiles class kvm_openfiles_wrapper { kvm_t* kd = NULL; public: kvm_openfiles_wrapper(const char* execf, const char* coref, const char* swapf, int flags, char* err) { this->kd = kvm_openfiles(execf, coref, swapf, flags, err); } ~kvm_openfiles_wrapper() { kvm_close(kd); } auto operator()() -> kvm_t* { return kd; } }; //* Collects and sorts process information from /proc auto collect(const bool no_update) -> vector & { const auto &sorting = Config::getS("proc_sorting"); const auto &reverse = Config::getB("proc_reversed"); const auto &filter = Config::getS("proc_filter"); const auto &per_core = Config::getB("proc_per_core"); const auto &tree = Config::getB("proc_tree"); const auto &show_detailed = Config::getB("show_detailed"); const size_t detailed_pid = Config::getI("detailed_pid"); bool should_filter = current_filter != filter; if (should_filter) current_filter = filter; const bool sorted_change = (sorting != current_sort or reverse != current_rev or should_filter); if (sorted_change) { current_sort = sorting; current_rev = reverse; } const int cmult = (per_core) ? Shared::coreCount : 1; bool got_detailed = false; vector> cpu_time(Shared::coreCount); size_t size = sizeof(long) * CPUSTATES * Shared::coreCount; if (sysctlbyname("kern.cp_times", &cpu_time[0], &size, NULL, 0) == -1) { Logger::error("failed to get CPU times"); } cputimes = 0; for (const auto core : cpu_time) { for (const unsigned int c_state : {CP_USER, CP_NICE, CP_SYS, CP_IDLE}) { cputimes += core[c_state]; } } //* Use pids from last update if only changing filter, sorting or tree options if (no_update and not current_procs.empty()) { if (show_detailed and detailed_pid != detailed.last_pid) _collect_details(detailed_pid, current_procs); } else { //* ---------------------------------------------Collection start---------------------------------------------- should_filter = true; vector found; struct timeval currentTime; gettimeofday(¤tTime, NULL); const double timeNow = currentTime.tv_sec + (currentTime.tv_usec / 1'000'000); int count = 0; char buf[_POSIX2_LINE_MAX]; kvm_openfiles_wrapper kd(NULL, _PATH_DEVNULL, NULL, O_RDONLY, buf); const struct kinfo_proc* kprocs = kvm_getprocs(kd(), KERN_PROC_PROC, 0, &count); for (int i = 0; i < count; i++) { const struct kinfo_proc* kproc = &kprocs[i]; const size_t pid = (size_t)kproc->ki_pid; if (pid < 1) continue; found.push_back(pid); //? Check if pid already exists in current_procs bool no_cache = false; auto find_old = rng::find(current_procs, pid, &proc_info::pid); if (find_old == current_procs.end()) { current_procs.push_back({pid}); find_old = current_procs.end() - 1; no_cache = true; } auto &new_proc = *find_old; //? Get program name, command, username, parent pid, nice and status if (no_cache) { if (kproc->ki_comm == NULL or kproc->ki_comm == "idle"s) { current_procs.pop_back(); continue; } new_proc.name = kproc->ki_comm; char** argv = kvm_getargv(kd(), kproc, 0); if (argv) { for (int i = 0; argv[i]; i++) { new_proc.cmd += argv[i] + " "s; } if (not new_proc.cmd.empty()) new_proc.cmd.pop_back(); } if (new_proc.cmd.empty()) new_proc.cmd = new_proc.name; new_proc.ppid = kproc->ki_ppid; new_proc.cpu_s = round(kproc->ki_start.tv_sec); struct passwd *pwd = getpwuid(kproc->ki_uid); if (pwd) new_proc.user = pwd->pw_name; } new_proc.p_nice = kproc->ki_nice; new_proc.state = kproc->ki_stat; int cpu_t = 0; cpu_t = kproc->ki_rusage.ru_utime.tv_sec * 1'000'000 + kproc->ki_rusage.ru_utime.tv_usec + kproc->ki_rusage.ru_stime.tv_sec * 1'000'000 + kproc->ki_rusage.ru_stime.tv_usec; new_proc.mem = kproc->ki_rssize * Shared::pageSize; new_proc.threads = kproc->ki_numthreads; //? Process cpu usage since last update new_proc.cpu_p = clamp((100.0 * ((cpu_t - new_proc.cpu_t) / 1'000'000.0) / max((uint64_t)1, (cputimes - old_cputimes) * Shared::clkTck)) * cmult / 100'000.0, 0.0, 100.0 * Shared::coreCount); //? Process cumulative cpu usage since process start new_proc.cpu_c = (double)(cpu_t * Shared::clkTck / 1'000'000) / max(1.0, timeNow - new_proc.cpu_s); //? Update cached value with latest cpu times new_proc.cpu_t = cpu_t; if (show_detailed and not got_detailed and new_proc.pid == detailed_pid) { got_detailed = true; } // //? Clear dead processes from current_procs auto eraser = rng::remove_if(current_procs, [&](const auto &element) { return not v_contains(found, element.pid); }); current_procs.erase(eraser.begin(), eraser.end()); //? Update the details info box for process if active if (show_detailed and got_detailed) { _collect_details(detailed_pid, current_procs); } else if (show_detailed and not got_detailed and detailed.status != "Dead") { detailed.status = "Dead"; redraw = true; } old_cputimes = cputimes; } } //* ---------------------------------------------Collection done----------------------------------------------- //* Sort processes if (sorted_change or not no_update) { switch (v_index(sort_vector, sorting)) { case 0: rng::sort(current_procs, rng::greater{}, &proc_info::pid); break; case 1: rng::sort(current_procs, rng::greater{}, &proc_info::name); break; case 2: rng::sort(current_procs, rng::greater{}, &proc_info::cmd); break; case 3: rng::sort(current_procs, rng::greater{}, &proc_info::threads); break; case 4: rng::sort(current_procs, rng::greater{}, &proc_info::user); break; case 5: rng::sort(current_procs, rng::greater{}, &proc_info::mem); break; case 6: rng::sort(current_procs, rng::greater{}, &proc_info::cpu_p); break; case 7: rng::sort(current_procs, rng::greater{}, &proc_info::cpu_c); break; } if (reverse) rng::reverse(current_procs); //* When sorting with "cpu lazy" push processes over threshold cpu usage to the front regardless of cumulative usage if (not tree and not reverse and sorting == "cpu lazy") { double max = 10.0, target = 30.0; for (size_t i = 0, x = 0, offset = 0; i < current_procs.size(); i++) { if (i <= 5 and current_procs.at(i).cpu_p > max) max = current_procs.at(i).cpu_p; else if (i == 6) target = (max > 30.0) ? max : 10.0; if (i == offset and current_procs.at(i).cpu_p > 30.0) offset++; else if (current_procs.at(i).cpu_p > target) { rotate(current_procs.begin() + offset, current_procs.begin() + i, current_procs.begin() + i + 1); if (++x > 10) break; } } } } //* Match filter if defined if (should_filter) { filter_found = 0; for (auto &p : current_procs) { if (not tree and not filter.empty()) { if (not s_contains(to_string(p.pid), filter) and not s_contains(p.name, filter) and not s_contains(p.cmd, filter) and not s_contains(p.user, filter)) { p.filtered = true; filter_found++; } else { p.filtered = false; } } else { p.filtered = false; } } } //* Generate tree view if enabled if (tree and (not no_update or should_filter or sorted_change)) { if (auto find_pid = (collapse != -1 ? collapse : expand); find_pid != -1) { auto collapser = rng::find(current_procs, find_pid, &proc_info::pid); if (collapser != current_procs.end()) { if (collapse == expand) { collapser->collapsed = not collapser->collapsed; } else if (collapse > -1) { collapser->collapsed = true; } else if (expand > -1) { collapser->collapsed = false; } } collapse = expand = -1; } if (should_filter or not filter.empty()) filter_found = 0; vector> tree_procs; tree_procs.reserve(current_procs.size()); //? Stable sort to retain selected sorting among processes with the same parent rng::stable_sort(current_procs, rng::less{}, &proc_info::ppid); //? Start recursive iteration over processes with the lowest shared parent pids for (auto &p : rng::equal_range(current_procs, current_procs.at(0).ppid, rng::less{}, &proc_info::ppid)) { _tree_gen(p, current_procs, tree_procs, 0, false, filter, false, no_update, should_filter); } //? Final sort based on tree index rng::sort(current_procs, rng::less{}, &proc_info::tree_index); if (reverse) rng::reverse(current_procs); } numpids = (int)current_procs.size() - filter_found; return current_procs; } } // namespace Proc namespace Tools { double system_uptime() { struct timeval ts, currTime; std::size_t len = sizeof(ts); int mib[2] = {CTL_KERN, KERN_BOOTTIME}; if (sysctl(mib, 2, &ts, &len, NULL, 0) != -1) { gettimeofday(&currTime, NULL); return currTime.tv_sec - ts.tv_sec; } return 0.0; } } // namespace Tools