Revert fmt submodule to static fmt folder in include

This commit is contained in:
aristocratos 2023-07-26 14:34:15 +02:00
parent ac17f34580
commit 33faa01910
30 changed files with 15803 additions and 90 deletions

3
.gitmodules vendored
View file

@ -1,3 +0,0 @@
[submodule "lib/fmt"]
path = lib/fmt
url = https://github.com/fmtlib/fmt

View file

@ -74,7 +74,7 @@ If you want to help out, test for bugs/fix bugs or just try out the branches:
```bash
# Install and use Homebrew or MacPorts package managers for easy dependency installation
brew install coreutils make gcc@11
git clone --recursive https://github.com/aristocratos/btop.git
git clone https://github.com/aristocratos/btop.git
cd btop
git checkout OSX
gmake
@ -83,7 +83,7 @@ gmake
**FreeBSD**
```bash
sudo pkg install gmake gcc11 coreutils git
git clone --recursive https://github.com/aristocratos/btop.git
git clone https://github.com/aristocratos/btop.git
cd btop
git checkout freebsd
gmake
@ -322,7 +322,7 @@ Also needs a UTF8 locale and a font that covers:
2. **Clone repository**
```bash
git clone --recursive https://github.com/aristocratos/btop.git
git clone https://github.com/aristocratos/btop.git
cd btop
```
@ -400,7 +400,7 @@ Also needs a UTF8 locale and a font that covers:
## Compilation macOS OSX
Needs GCC 10 or higher, (GCC 11 or above strongly recommended for better CPU efficiency in the compiled binary).
GCC 12 needed for macOS Ventura. If you get linker errors on Ventura you'll need to upgrade your command line tools (Version 14.0) is bugged.
The makefile also needs GNU coreutils and `sed`.
@ -416,14 +416,14 @@ Also needs a UTF8 locale and a font that covers:
2. **Clone repository**
```bash
git clone --recursive https://github.com/aristocratos/btop.git
git clone https://github.com/aristocratos/btop.git
cd btop
```
3. **Compile**
Append `VERBOSE=true` to display full compiler/linker commands.
Append `STATIC=true` for static compilation (only libgcc and libstdc++ will be static!).
Append `QUIET=true` for less verbose output.
@ -502,7 +502,7 @@ Also needs a UTF8 locale and a font that covers:
2. **Clone repository**
```bash
git clone --recursive https://github.com/aristocratos/btop.git
git clone https://github.com/aristocratos/btop.git
cd btop
```
@ -594,7 +594,7 @@ Also needs a UTF8 locale and a font that covers:
```bash
sudo snap connect btop:removable-media
or
or
sudo snap connect btop-desktop:removable-media
```

27
include/fmt/LICENSE.rst Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2012 - present, Victor Zverovich and {fmt} contributors
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--- Optional exception to the license ---
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into a machine-executable object form of such
source code, you may redistribute such embedded portions in such object form
without including the above copyright and permission notices.

234
include/fmt/args.h Normal file
View file

@ -0,0 +1,234 @@
// Formatting library for C++ - dynamic format arguments
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_ARGS_H_
#define FMT_ARGS_H_
#include <functional> // std::reference_wrapper
#include <memory> // std::unique_ptr
#include <vector>
#include "core.h"
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename T> struct is_reference_wrapper : std::false_type {};
template <typename T>
struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {};
template <typename T> const T& unwrap(const T& v) { return v; }
template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) {
return static_cast<const T&>(v);
}
class dynamic_arg_list {
// Workaround for clang's -Wweak-vtables. Unlike for regular classes, for
// templates it doesn't complain about inability to deduce single translation
// unit for placing vtable. So storage_node_base is made a fake template.
template <typename = void> struct node {
virtual ~node() = default;
std::unique_ptr<node<>> next;
};
template <typename T> struct typed_node : node<> {
T value;
template <typename Arg>
FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {}
template <typename Char>
FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg)
: value(arg.data(), arg.size()) {}
};
std::unique_ptr<node<>> head_;
public:
template <typename T, typename Arg> const T& push(const Arg& arg) {
auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg));
auto& value = new_node->value;
new_node->next = std::move(head_);
head_ = std::move(new_node);
return value;
}
};
} // namespace detail
/**
\rst
A dynamic version of `fmt::format_arg_store`.
It's equipped with a storage to potentially temporary objects which lifetimes
could be shorter than the format arguments object.
It can be implicitly converted into `~fmt::basic_format_args` for passing
into type-erased formatting functions such as `~fmt::vformat`.
\endrst
*/
template <typename Context>
class dynamic_format_arg_store
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
// Workaround a GCC template argument substitution bug.
: public basic_format_args<Context>
#endif
{
private:
using char_type = typename Context::char_type;
template <typename T> struct need_copy {
static constexpr detail::type mapped_type =
detail::mapped_type_constant<T, Context>::value;
enum {
value = !(detail::is_reference_wrapper<T>::value ||
std::is_same<T, basic_string_view<char_type>>::value ||
std::is_same<T, detail::std_string_view<char_type>>::value ||
(mapped_type != detail::type::cstring_type &&
mapped_type != detail::type::string_type &&
mapped_type != detail::type::custom_type))
};
};
template <typename T>
using stored_type = conditional_t<
std::is_convertible<T, std::basic_string<char_type>>::value &&
!detail::is_reference_wrapper<T>::value,
std::basic_string<char_type>, T>;
// Storage of basic_format_arg must be contiguous.
std::vector<basic_format_arg<Context>> data_;
std::vector<detail::named_arg_info<char_type>> named_info_;
// Storage of arguments not fitting into basic_format_arg must grow
// without relocation because items in data_ refer to it.
detail::dynamic_arg_list dynamic_args_;
friend class basic_format_args<Context>;
unsigned long long get_types() const {
return detail::is_unpacked_bit | data_.size() |
(named_info_.empty()
? 0ULL
: static_cast<unsigned long long>(detail::has_named_args_bit));
}
const basic_format_arg<Context>* data() const {
return named_info_.empty() ? data_.data() : data_.data() + 1;
}
template <typename T> void emplace_arg(const T& arg) {
data_.emplace_back(detail::make_arg<Context>(arg));
}
template <typename T>
void emplace_arg(const detail::named_arg<char_type, T>& arg) {
if (named_info_.empty()) {
constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr};
data_.insert(data_.begin(), {zero_ptr, 0});
}
data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value)));
auto pop_one = [](std::vector<basic_format_arg<Context>>* data) {
data->pop_back();
};
std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)>
guard{&data_, pop_one};
named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)});
data_[0].value_.named_args = {named_info_.data(), named_info_.size()};
guard.release();
}
public:
constexpr dynamic_format_arg_store() = default;
/**
\rst
Adds an argument into the dynamic store for later passing to a formatting
function.
Note that custom types and string types (but not string views) are copied
into the store dynamically allocating memory if necessary.
**Example**::
fmt::dynamic_format_arg_store<fmt::format_context> store;
store.push_back(42);
store.push_back("abc");
store.push_back(1.5f);
std::string result = fmt::vformat("{} and {} and {}", store);
\endrst
*/
template <typename T> void push_back(const T& arg) {
if (detail::const_check(need_copy<T>::value))
emplace_arg(dynamic_args_.push<stored_type<T>>(arg));
else
emplace_arg(detail::unwrap(arg));
}
/**
\rst
Adds a reference to the argument into the dynamic store for later passing to
a formatting function.
**Example**::
fmt::dynamic_format_arg_store<fmt::format_context> store;
char band[] = "Rolling Stones";
store.push_back(std::cref(band));
band[9] = 'c'; // Changing str affects the output.
std::string result = fmt::vformat("{}", store);
// result == "Rolling Scones"
\endrst
*/
template <typename T> void push_back(std::reference_wrapper<T> arg) {
static_assert(
need_copy<T>::value,
"objects of built-in types and string views are always copied");
emplace_arg(arg.get());
}
/**
Adds named argument into the dynamic store for later passing to a formatting
function. ``std::reference_wrapper`` is supported to avoid copying of the
argument. The name is always copied into the store.
*/
template <typename T>
void push_back(const detail::named_arg<char_type, T>& arg) {
const char_type* arg_name =
dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str();
if (detail::const_check(need_copy<T>::value)) {
emplace_arg(
fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value)));
} else {
emplace_arg(fmt::arg(arg_name, arg.value));
}
}
/** Erase all elements from the store */
void clear() {
data_.clear();
named_info_.clear();
dynamic_args_ = detail::dynamic_arg_list();
}
/**
\rst
Reserves space to store at least *new_cap* arguments including
*new_cap_named* named arguments.
\endrst
*/
void reserve(size_t new_cap, size_t new_cap_named) {
FMT_ASSERT(new_cap >= new_cap_named,
"Set of arguments includes set of named arguments");
data_.reserve(new_cap);
named_info_.reserve(new_cap_named);
}
};
FMT_END_NAMESPACE
#endif // FMT_ARGS_H_

2268
include/fmt/chrono.h Normal file

File diff suppressed because it is too large Load diff

633
include/fmt/color.h Normal file
View file

@ -0,0 +1,633 @@
// Formatting library for C++ - color support
//
// Copyright (c) 2018 - present, Victor Zverovich and fmt contributors
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_COLOR_H_
#define FMT_COLOR_H_
#include "format.h"
FMT_BEGIN_NAMESPACE
FMT_BEGIN_EXPORT
enum class color : uint32_t {
alice_blue = 0xF0F8FF, // rgb(240,248,255)
antique_white = 0xFAEBD7, // rgb(250,235,215)
aqua = 0x00FFFF, // rgb(0,255,255)
aquamarine = 0x7FFFD4, // rgb(127,255,212)
azure = 0xF0FFFF, // rgb(240,255,255)
beige = 0xF5F5DC, // rgb(245,245,220)
bisque = 0xFFE4C4, // rgb(255,228,196)
black = 0x000000, // rgb(0,0,0)
blanched_almond = 0xFFEBCD, // rgb(255,235,205)
blue = 0x0000FF, // rgb(0,0,255)
blue_violet = 0x8A2BE2, // rgb(138,43,226)
brown = 0xA52A2A, // rgb(165,42,42)
burly_wood = 0xDEB887, // rgb(222,184,135)
cadet_blue = 0x5F9EA0, // rgb(95,158,160)
chartreuse = 0x7FFF00, // rgb(127,255,0)
chocolate = 0xD2691E, // rgb(210,105,30)
coral = 0xFF7F50, // rgb(255,127,80)
cornflower_blue = 0x6495ED, // rgb(100,149,237)
cornsilk = 0xFFF8DC, // rgb(255,248,220)
crimson = 0xDC143C, // rgb(220,20,60)
cyan = 0x00FFFF, // rgb(0,255,255)
dark_blue = 0x00008B, // rgb(0,0,139)
dark_cyan = 0x008B8B, // rgb(0,139,139)
dark_golden_rod = 0xB8860B, // rgb(184,134,11)
dark_gray = 0xA9A9A9, // rgb(169,169,169)
dark_green = 0x006400, // rgb(0,100,0)
dark_khaki = 0xBDB76B, // rgb(189,183,107)
dark_magenta = 0x8B008B, // rgb(139,0,139)
dark_olive_green = 0x556B2F, // rgb(85,107,47)
dark_orange = 0xFF8C00, // rgb(255,140,0)
dark_orchid = 0x9932CC, // rgb(153,50,204)
dark_red = 0x8B0000, // rgb(139,0,0)
dark_salmon = 0xE9967A, // rgb(233,150,122)
dark_sea_green = 0x8FBC8F, // rgb(143,188,143)
dark_slate_blue = 0x483D8B, // rgb(72,61,139)
dark_slate_gray = 0x2F4F4F, // rgb(47,79,79)
dark_turquoise = 0x00CED1, // rgb(0,206,209)
dark_violet = 0x9400D3, // rgb(148,0,211)
deep_pink = 0xFF1493, // rgb(255,20,147)
deep_sky_blue = 0x00BFFF, // rgb(0,191,255)
dim_gray = 0x696969, // rgb(105,105,105)
dodger_blue = 0x1E90FF, // rgb(30,144,255)
fire_brick = 0xB22222, // rgb(178,34,34)
floral_white = 0xFFFAF0, // rgb(255,250,240)
forest_green = 0x228B22, // rgb(34,139,34)
fuchsia = 0xFF00FF, // rgb(255,0,255)
gainsboro = 0xDCDCDC, // rgb(220,220,220)
ghost_white = 0xF8F8FF, // rgb(248,248,255)
gold = 0xFFD700, // rgb(255,215,0)
golden_rod = 0xDAA520, // rgb(218,165,32)
gray = 0x808080, // rgb(128,128,128)
green = 0x008000, // rgb(0,128,0)
green_yellow = 0xADFF2F, // rgb(173,255,47)
honey_dew = 0xF0FFF0, // rgb(240,255,240)
hot_pink = 0xFF69B4, // rgb(255,105,180)
indian_red = 0xCD5C5C, // rgb(205,92,92)
indigo = 0x4B0082, // rgb(75,0,130)
ivory = 0xFFFFF0, // rgb(255,255,240)
khaki = 0xF0E68C, // rgb(240,230,140)
lavender = 0xE6E6FA, // rgb(230,230,250)
lavender_blush = 0xFFF0F5, // rgb(255,240,245)
lawn_green = 0x7CFC00, // rgb(124,252,0)
lemon_chiffon = 0xFFFACD, // rgb(255,250,205)
light_blue = 0xADD8E6, // rgb(173,216,230)
light_coral = 0xF08080, // rgb(240,128,128)
light_cyan = 0xE0FFFF, // rgb(224,255,255)
light_golden_rod_yellow = 0xFAFAD2, // rgb(250,250,210)
light_gray = 0xD3D3D3, // rgb(211,211,211)
light_green = 0x90EE90, // rgb(144,238,144)
light_pink = 0xFFB6C1, // rgb(255,182,193)
light_salmon = 0xFFA07A, // rgb(255,160,122)
light_sea_green = 0x20B2AA, // rgb(32,178,170)
light_sky_blue = 0x87CEFA, // rgb(135,206,250)
light_slate_gray = 0x778899, // rgb(119,136,153)
light_steel_blue = 0xB0C4DE, // rgb(176,196,222)
light_yellow = 0xFFFFE0, // rgb(255,255,224)
lime = 0x00FF00, // rgb(0,255,0)
lime_green = 0x32CD32, // rgb(50,205,50)
linen = 0xFAF0E6, // rgb(250,240,230)
magenta = 0xFF00FF, // rgb(255,0,255)
maroon = 0x800000, // rgb(128,0,0)
medium_aquamarine = 0x66CDAA, // rgb(102,205,170)
medium_blue = 0x0000CD, // rgb(0,0,205)
medium_orchid = 0xBA55D3, // rgb(186,85,211)
medium_purple = 0x9370DB, // rgb(147,112,219)
medium_sea_green = 0x3CB371, // rgb(60,179,113)
medium_slate_blue = 0x7B68EE, // rgb(123,104,238)
medium_spring_green = 0x00FA9A, // rgb(0,250,154)
medium_turquoise = 0x48D1CC, // rgb(72,209,204)
medium_violet_red = 0xC71585, // rgb(199,21,133)
midnight_blue = 0x191970, // rgb(25,25,112)
mint_cream = 0xF5FFFA, // rgb(245,255,250)
misty_rose = 0xFFE4E1, // rgb(255,228,225)
moccasin = 0xFFE4B5, // rgb(255,228,181)
navajo_white = 0xFFDEAD, // rgb(255,222,173)
navy = 0x000080, // rgb(0,0,128)
old_lace = 0xFDF5E6, // rgb(253,245,230)
olive = 0x808000, // rgb(128,128,0)
olive_drab = 0x6B8E23, // rgb(107,142,35)
orange = 0xFFA500, // rgb(255,165,0)
orange_red = 0xFF4500, // rgb(255,69,0)
orchid = 0xDA70D6, // rgb(218,112,214)
pale_golden_rod = 0xEEE8AA, // rgb(238,232,170)
pale_green = 0x98FB98, // rgb(152,251,152)
pale_turquoise = 0xAFEEEE, // rgb(175,238,238)
pale_violet_red = 0xDB7093, // rgb(219,112,147)
papaya_whip = 0xFFEFD5, // rgb(255,239,213)
peach_puff = 0xFFDAB9, // rgb(255,218,185)
peru = 0xCD853F, // rgb(205,133,63)
pink = 0xFFC0CB, // rgb(255,192,203)
plum = 0xDDA0DD, // rgb(221,160,221)
powder_blue = 0xB0E0E6, // rgb(176,224,230)
purple = 0x800080, // rgb(128,0,128)
rebecca_purple = 0x663399, // rgb(102,51,153)
red = 0xFF0000, // rgb(255,0,0)
rosy_brown = 0xBC8F8F, // rgb(188,143,143)
royal_blue = 0x4169E1, // rgb(65,105,225)
saddle_brown = 0x8B4513, // rgb(139,69,19)
salmon = 0xFA8072, // rgb(250,128,114)
sandy_brown = 0xF4A460, // rgb(244,164,96)
sea_green = 0x2E8B57, // rgb(46,139,87)
sea_shell = 0xFFF5EE, // rgb(255,245,238)
sienna = 0xA0522D, // rgb(160,82,45)
silver = 0xC0C0C0, // rgb(192,192,192)
sky_blue = 0x87CEEB, // rgb(135,206,235)
slate_blue = 0x6A5ACD, // rgb(106,90,205)
slate_gray = 0x708090, // rgb(112,128,144)
snow = 0xFFFAFA, // rgb(255,250,250)
spring_green = 0x00FF7F, // rgb(0,255,127)
steel_blue = 0x4682B4, // rgb(70,130,180)
tan = 0xD2B48C, // rgb(210,180,140)
teal = 0x008080, // rgb(0,128,128)
thistle = 0xD8BFD8, // rgb(216,191,216)
tomato = 0xFF6347, // rgb(255,99,71)
turquoise = 0x40E0D0, // rgb(64,224,208)
violet = 0xEE82EE, // rgb(238,130,238)
wheat = 0xF5DEB3, // rgb(245,222,179)
white = 0xFFFFFF, // rgb(255,255,255)
white_smoke = 0xF5F5F5, // rgb(245,245,245)
yellow = 0xFFFF00, // rgb(255,255,0)
yellow_green = 0x9ACD32 // rgb(154,205,50)
}; // enum class color
enum class terminal_color : uint8_t {
black = 30,
red,
green,
yellow,
blue,
magenta,
cyan,
white,
bright_black = 90,
bright_red,
bright_green,
bright_yellow,
bright_blue,
bright_magenta,
bright_cyan,
bright_white
};
enum class emphasis : uint8_t {
bold = 1,
faint = 1 << 1,
italic = 1 << 2,
underline = 1 << 3,
blink = 1 << 4,
reverse = 1 << 5,
conceal = 1 << 6,
strikethrough = 1 << 7,
};
// rgb is a struct for red, green and blue colors.
// Using the name "rgb" makes some editors show the color in a tooltip.
struct rgb {
FMT_CONSTEXPR rgb() : r(0), g(0), b(0) {}
FMT_CONSTEXPR rgb(uint8_t r_, uint8_t g_, uint8_t b_) : r(r_), g(g_), b(b_) {}
FMT_CONSTEXPR rgb(uint32_t hex)
: r((hex >> 16) & 0xFF), g((hex >> 8) & 0xFF), b(hex & 0xFF) {}
FMT_CONSTEXPR rgb(color hex)
: r((uint32_t(hex) >> 16) & 0xFF),
g((uint32_t(hex) >> 8) & 0xFF),
b(uint32_t(hex) & 0xFF) {}
uint8_t r;
uint8_t g;
uint8_t b;
};
FMT_BEGIN_DETAIL_NAMESPACE
// color is a struct of either a rgb color or a terminal color.
struct color_type {
FMT_CONSTEXPR color_type() noexcept : is_rgb(), value{} {}
FMT_CONSTEXPR color_type(color rgb_color) noexcept : is_rgb(true), value{} {
value.rgb_color = static_cast<uint32_t>(rgb_color);
}
FMT_CONSTEXPR color_type(rgb rgb_color) noexcept : is_rgb(true), value{} {
value.rgb_color = (static_cast<uint32_t>(rgb_color.r) << 16) |
(static_cast<uint32_t>(rgb_color.g) << 8) | rgb_color.b;
}
FMT_CONSTEXPR color_type(terminal_color term_color) noexcept
: is_rgb(), value{} {
value.term_color = static_cast<uint8_t>(term_color);
}
bool is_rgb;
union color_union {
uint8_t term_color;
uint32_t rgb_color;
} value;
};
FMT_END_DETAIL_NAMESPACE
/** A text style consisting of foreground and background colors and emphasis. */
class text_style {
public:
FMT_CONSTEXPR text_style(emphasis em = emphasis()) noexcept
: set_foreground_color(), set_background_color(), ems(em) {}
FMT_CONSTEXPR text_style& operator|=(const text_style& rhs) {
if (!set_foreground_color) {
set_foreground_color = rhs.set_foreground_color;
foreground_color = rhs.foreground_color;
} else if (rhs.set_foreground_color) {
if (!foreground_color.is_rgb || !rhs.foreground_color.is_rgb)
FMT_THROW(format_error("can't OR a terminal color"));
foreground_color.value.rgb_color |= rhs.foreground_color.value.rgb_color;
}
if (!set_background_color) {
set_background_color = rhs.set_background_color;
background_color = rhs.background_color;
} else if (rhs.set_background_color) {
if (!background_color.is_rgb || !rhs.background_color.is_rgb)
FMT_THROW(format_error("can't OR a terminal color"));
background_color.value.rgb_color |= rhs.background_color.value.rgb_color;
}
ems = static_cast<emphasis>(static_cast<uint8_t>(ems) |
static_cast<uint8_t>(rhs.ems));
return *this;
}
friend FMT_CONSTEXPR text_style operator|(text_style lhs,
const text_style& rhs) {
return lhs |= rhs;
}
FMT_CONSTEXPR bool has_foreground() const noexcept {
return set_foreground_color;
}
FMT_CONSTEXPR bool has_background() const noexcept {
return set_background_color;
}
FMT_CONSTEXPR bool has_emphasis() const noexcept {
return static_cast<uint8_t>(ems) != 0;
}
FMT_CONSTEXPR detail::color_type get_foreground() const noexcept {
FMT_ASSERT(has_foreground(), "no foreground specified for this style");
return foreground_color;
}
FMT_CONSTEXPR detail::color_type get_background() const noexcept {
FMT_ASSERT(has_background(), "no background specified for this style");
return background_color;
}
FMT_CONSTEXPR emphasis get_emphasis() const noexcept {
FMT_ASSERT(has_emphasis(), "no emphasis specified for this style");
return ems;
}
private:
FMT_CONSTEXPR text_style(bool is_foreground,
detail::color_type text_color) noexcept
: set_foreground_color(), set_background_color(), ems() {
if (is_foreground) {
foreground_color = text_color;
set_foreground_color = true;
} else {
background_color = text_color;
set_background_color = true;
}
}
friend FMT_CONSTEXPR text_style fg(detail::color_type foreground) noexcept;
friend FMT_CONSTEXPR text_style bg(detail::color_type background) noexcept;
detail::color_type foreground_color;
detail::color_type background_color;
bool set_foreground_color;
bool set_background_color;
emphasis ems;
};
/** Creates a text style from the foreground (text) color. */
FMT_CONSTEXPR inline text_style fg(detail::color_type foreground) noexcept {
return text_style(true, foreground);
}
/** Creates a text style from the background color. */
FMT_CONSTEXPR inline text_style bg(detail::color_type background) noexcept {
return text_style(false, background);
}
FMT_CONSTEXPR inline text_style operator|(emphasis lhs, emphasis rhs) noexcept {
return text_style(lhs) | rhs;
}
FMT_BEGIN_DETAIL_NAMESPACE
template <typename Char> struct ansi_color_escape {
FMT_CONSTEXPR ansi_color_escape(detail::color_type text_color,
const char* esc) noexcept {
// If we have a terminal color, we need to output another escape code
// sequence.
if (!text_color.is_rgb) {
bool is_background = esc == string_view("\x1b[48;2;");
uint32_t value = text_color.value.term_color;
// Background ASCII codes are the same as the foreground ones but with
// 10 more.
if (is_background) value += 10u;
size_t index = 0;
buffer[index++] = static_cast<Char>('\x1b');
buffer[index++] = static_cast<Char>('[');
if (value >= 100u) {
buffer[index++] = static_cast<Char>('1');
value %= 100u;
}
buffer[index++] = static_cast<Char>('0' + value / 10u);
buffer[index++] = static_cast<Char>('0' + value % 10u);
buffer[index++] = static_cast<Char>('m');
buffer[index++] = static_cast<Char>('\0');
return;
}
for (int i = 0; i < 7; i++) {
buffer[i] = static_cast<Char>(esc[i]);
}
rgb color(text_color.value.rgb_color);
to_esc(color.r, buffer + 7, ';');
to_esc(color.g, buffer + 11, ';');
to_esc(color.b, buffer + 15, 'm');
buffer[19] = static_cast<Char>(0);
}
FMT_CONSTEXPR ansi_color_escape(emphasis em) noexcept {
uint8_t em_codes[num_emphases] = {};
if (has_emphasis(em, emphasis::bold)) em_codes[0] = 1;
if (has_emphasis(em, emphasis::faint)) em_codes[1] = 2;
if (has_emphasis(em, emphasis::italic)) em_codes[2] = 3;
if (has_emphasis(em, emphasis::underline)) em_codes[3] = 4;
if (has_emphasis(em, emphasis::blink)) em_codes[4] = 5;
if (has_emphasis(em, emphasis::reverse)) em_codes[5] = 7;
if (has_emphasis(em, emphasis::conceal)) em_codes[6] = 8;
if (has_emphasis(em, emphasis::strikethrough)) em_codes[7] = 9;
size_t index = 0;
for (size_t i = 0; i < num_emphases; ++i) {
if (!em_codes[i]) continue;
buffer[index++] = static_cast<Char>('\x1b');
buffer[index++] = static_cast<Char>('[');
buffer[index++] = static_cast<Char>('0' + em_codes[i]);
buffer[index++] = static_cast<Char>('m');
}
buffer[index++] = static_cast<Char>(0);
}
FMT_CONSTEXPR operator const Char*() const noexcept { return buffer; }
FMT_CONSTEXPR const Char* begin() const noexcept { return buffer; }
FMT_CONSTEXPR_CHAR_TRAITS const Char* end() const noexcept {
return buffer + std::char_traits<Char>::length(buffer);
}
private:
static constexpr size_t num_emphases = 8;
Char buffer[7u + 3u * num_emphases + 1u];
static FMT_CONSTEXPR void to_esc(uint8_t c, Char* out,
char delimiter) noexcept {
out[0] = static_cast<Char>('0' + c / 100);
out[1] = static_cast<Char>('0' + c / 10 % 10);
out[2] = static_cast<Char>('0' + c % 10);
out[3] = static_cast<Char>(delimiter);
}
static FMT_CONSTEXPR bool has_emphasis(emphasis em, emphasis mask) noexcept {
return static_cast<uint8_t>(em) & static_cast<uint8_t>(mask);
}
};
template <typename Char>
FMT_CONSTEXPR ansi_color_escape<Char> make_foreground_color(
detail::color_type foreground) noexcept {
return ansi_color_escape<Char>(foreground, "\x1b[38;2;");
}
template <typename Char>
FMT_CONSTEXPR ansi_color_escape<Char> make_background_color(
detail::color_type background) noexcept {
return ansi_color_escape<Char>(background, "\x1b[48;2;");
}
template <typename Char>
FMT_CONSTEXPR ansi_color_escape<Char> make_emphasis(emphasis em) noexcept {
return ansi_color_escape<Char>(em);
}
template <typename Char> inline void reset_color(buffer<Char>& buffer) {
auto reset_color = string_view("\x1b[0m");
buffer.append(reset_color.begin(), reset_color.end());
}
template <typename T> struct styled_arg {
const T& value;
text_style style;
};
template <typename Char>
void vformat_to(buffer<Char>& buf, const text_style& ts,
basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
bool has_style = false;
if (ts.has_emphasis()) {
has_style = true;
auto emphasis = detail::make_emphasis<Char>(ts.get_emphasis());
buf.append(emphasis.begin(), emphasis.end());
}
if (ts.has_foreground()) {
has_style = true;
auto foreground = detail::make_foreground_color<Char>(ts.get_foreground());
buf.append(foreground.begin(), foreground.end());
}
if (ts.has_background()) {
has_style = true;
auto background = detail::make_background_color<Char>(ts.get_background());
buf.append(background.begin(), background.end());
}
detail::vformat_to(buf, format_str, args, {});
if (has_style) detail::reset_color<Char>(buf);
}
FMT_END_DETAIL_NAMESPACE
inline void vprint(std::FILE* f, const text_style& ts, string_view fmt,
format_args args) {
// Legacy wide streams are not supported.
auto buf = memory_buffer();
detail::vformat_to(buf, ts, fmt, args);
if (detail::is_utf8()) {
detail::print(f, string_view(buf.begin(), buf.size()));
return;
}
buf.push_back('\0');
int result = std::fputs(buf.data(), f);
if (result < 0)
FMT_THROW(system_error(errno, FMT_STRING("cannot write to file")));
}
/**
\rst
Formats a string and prints it to the specified file stream using ANSI
escape sequences to specify text formatting.
**Example**::
fmt::print(fmt::emphasis::bold | fg(fmt::color::red),
"Elapsed time: {0:.2f} seconds", 1.23);
\endrst
*/
template <typename S, typename... Args,
FMT_ENABLE_IF(detail::is_string<S>::value)>
void print(std::FILE* f, const text_style& ts, const S& format_str,
const Args&... args) {
vprint(f, ts, format_str,
fmt::make_format_args<buffer_context<char_t<S>>>(args...));
}
/**
\rst
Formats a string and prints it to stdout using ANSI escape sequences to
specify text formatting.
**Example**::
fmt::print(fmt::emphasis::bold | fg(fmt::color::red),
"Elapsed time: {0:.2f} seconds", 1.23);
\endrst
*/
template <typename S, typename... Args,
FMT_ENABLE_IF(detail::is_string<S>::value)>
void print(const text_style& ts, const S& format_str, const Args&... args) {
return print(stdout, ts, format_str, args...);
}
template <typename S, typename Char = char_t<S>>
inline std::basic_string<Char> vformat(
const text_style& ts, const S& format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
basic_memory_buffer<Char> buf;
detail::vformat_to(buf, ts, detail::to_string_view(format_str), args);
return fmt::to_string(buf);
}
/**
\rst
Formats arguments and returns the result as a string using ANSI
escape sequences to specify text formatting.
**Example**::
#include <fmt/color.h>
std::string message = fmt::format(fmt::emphasis::bold | fg(fmt::color::red),
"The answer is {}", 42);
\endrst
*/
template <typename S, typename... Args, typename Char = char_t<S>>
inline std::basic_string<Char> format(const text_style& ts, const S& format_str,
const Args&... args) {
return fmt::vformat(ts, detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<Char>>(args...));
}
/**
Formats a string with the given text_style and writes the output to ``out``.
*/
template <typename OutputIt, typename Char,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value)>
OutputIt vformat_to(
OutputIt out, const text_style& ts, basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
auto&& buf = detail::get_buffer<Char>(out);
detail::vformat_to(buf, ts, format_str, args);
return detail::get_iterator(buf, out);
}
/**
\rst
Formats arguments with the given text_style, writes the result to the output
iterator ``out`` and returns the iterator past the end of the output range.
**Example**::
std::vector<char> out;
fmt::format_to(std::back_inserter(out),
fmt::emphasis::bold | fg(fmt::color::red), "{}", 42);
\endrst
*/
template <typename OutputIt, typename S, typename... Args,
bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value&&
detail::is_string<S>::value>
inline auto format_to(OutputIt out, const text_style& ts, const S& format_str,
Args&&... args) ->
typename std::enable_if<enable, OutputIt>::type {
return vformat_to(out, ts, detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<char_t<S>>>(args...));
}
template <typename T, typename Char>
struct formatter<detail::styled_arg<T>, Char> : formatter<T, Char> {
template <typename FormatContext>
auto format(const detail::styled_arg<T>& arg, FormatContext& ctx) const
-> decltype(ctx.out()) {
const auto& ts = arg.style;
const auto& value = arg.value;
auto out = ctx.out();
bool has_style = false;
if (ts.has_emphasis()) {
has_style = true;
auto emphasis = detail::make_emphasis<Char>(ts.get_emphasis());
out = std::copy(emphasis.begin(), emphasis.end(), out);
}
if (ts.has_foreground()) {
has_style = true;
auto foreground =
detail::make_foreground_color<Char>(ts.get_foreground());
out = std::copy(foreground.begin(), foreground.end(), out);
}
if (ts.has_background()) {
has_style = true;
auto background =
detail::make_background_color<Char>(ts.get_background());
out = std::copy(background.begin(), background.end(), out);
}
out = formatter<T, Char>::format(value, ctx);
if (has_style) {
auto reset_color = string_view("\x1b[0m");
out = std::copy(reset_color.begin(), reset_color.end(), out);
}
return out;
}
};
/**
\rst
Returns an argument that will be formatted using ANSI escape sequences,
to be used in a formatting function.
**Example**::
fmt::print("Elapsed time: {0:.2f} seconds",
fmt::styled(1.23, fmt::fg(fmt::color::green) |
fmt::bg(fmt::color::blue)));
\endrst
*/
template <typename T>
FMT_CONSTEXPR auto styled(const T& value, text_style ts)
-> detail::styled_arg<remove_cvref_t<T>> {
return detail::styled_arg<remove_cvref_t<T>>{value, ts};
}
FMT_END_EXPORT
FMT_END_NAMESPACE
#endif // FMT_COLOR_H_

605
include/fmt/compile.h Normal file
View file

@ -0,0 +1,605 @@
// Formatting library for C++ - experimental format string compilation
//
// Copyright (c) 2012 - present, Victor Zverovich and fmt contributors
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_COMPILE_H_
#define FMT_COMPILE_H_
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Char, typename InputIt>
FMT_CONSTEXPR inline counting_iterator copy_str(InputIt begin, InputIt end,
counting_iterator it) {
return it + (end - begin);
}
template <typename OutputIt> class truncating_iterator_base {
protected:
OutputIt out_;
size_t limit_;
size_t count_ = 0;
truncating_iterator_base() : out_(), limit_(0) {}
truncating_iterator_base(OutputIt out, size_t limit)
: out_(out), limit_(limit) {}
public:
using iterator_category = std::output_iterator_tag;
using value_type = typename std::iterator_traits<OutputIt>::value_type;
using difference_type = std::ptrdiff_t;
using pointer = void;
using reference = void;
FMT_UNCHECKED_ITERATOR(truncating_iterator_base);
OutputIt base() const { return out_; }
size_t count() const { return count_; }
};
// An output iterator that truncates the output and counts the number of objects
// written to it.
template <typename OutputIt,
typename Enable = typename std::is_void<
typename std::iterator_traits<OutputIt>::value_type>::type>
class truncating_iterator;
template <typename OutputIt>
class truncating_iterator<OutputIt, std::false_type>
: public truncating_iterator_base<OutputIt> {
mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_;
public:
using value_type = typename truncating_iterator_base<OutputIt>::value_type;
truncating_iterator() = default;
truncating_iterator(OutputIt out, size_t limit)
: truncating_iterator_base<OutputIt>(out, limit) {}
truncating_iterator& operator++() {
if (this->count_++ < this->limit_) ++this->out_;
return *this;
}
truncating_iterator operator++(int) {
auto it = *this;
++*this;
return it;
}
value_type& operator*() const {
return this->count_ < this->limit_ ? *this->out_ : blackhole_;
}
};
template <typename OutputIt>
class truncating_iterator<OutputIt, std::true_type>
: public truncating_iterator_base<OutputIt> {
public:
truncating_iterator() = default;
truncating_iterator(OutputIt out, size_t limit)
: truncating_iterator_base<OutputIt>(out, limit) {}
template <typename T> truncating_iterator& operator=(T val) {
if (this->count_++ < this->limit_) *this->out_++ = val;
return *this;
}
truncating_iterator& operator++() { return *this; }
truncating_iterator& operator++(int) { return *this; }
truncating_iterator& operator*() { return *this; }
};
// A compile-time string which is compiled into fast formatting code.
class compiled_string {};
template <typename S>
struct is_compiled_string : std::is_base_of<compiled_string, S> {};
/**
\rst
Converts a string literal *s* into a format string that will be parsed at
compile time and converted into efficient formatting code. Requires C++17
``constexpr if`` compiler support.
**Example**::
// Converts 42 into std::string using the most efficient method and no
// runtime format string processing.
std::string s = fmt::format(FMT_COMPILE("{}"), 42);
\endrst
*/
#if defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction)
# define FMT_COMPILE(s) \
FMT_STRING_IMPL(s, fmt::detail::compiled_string, explicit)
#else
# define FMT_COMPILE(s) FMT_STRING(s)
#endif
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
template <typename Char, size_t N,
fmt::detail_exported::fixed_string<Char, N> Str>
struct udl_compiled_string : compiled_string {
using char_type = Char;
explicit constexpr operator basic_string_view<char_type>() const {
return {Str.data, N - 1};
}
};
#endif
template <typename T, typename... Tail>
const T& first(const T& value, const Tail&...) {
return value;
}
#if defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction)
template <typename... Args> struct type_list {};
// Returns a reference to the argument at index N from [first, rest...].
template <int N, typename T, typename... Args>
constexpr const auto& get([[maybe_unused]] const T& first,
[[maybe_unused]] const Args&... rest) {
static_assert(N < 1 + sizeof...(Args), "index is out of bounds");
if constexpr (N == 0)
return first;
else
return detail::get<N - 1>(rest...);
}
template <typename Char, typename... Args>
constexpr int get_arg_index_by_name(basic_string_view<Char> name,
type_list<Args...>) {
return get_arg_index_by_name<Args...>(name);
}
template <int N, typename> struct get_type_impl;
template <int N, typename... Args> struct get_type_impl<N, type_list<Args...>> {
using type =
remove_cvref_t<decltype(detail::get<N>(std::declval<Args>()...))>;
};
template <int N, typename T>
using get_type = typename get_type_impl<N, T>::type;
template <typename T> struct is_compiled_format : std::false_type {};
template <typename Char> struct text {
basic_string_view<Char> data;
using char_type = Char;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&...) const {
return write<Char>(out, data);
}
};
template <typename Char>
struct is_compiled_format<text<Char>> : std::true_type {};
template <typename Char>
constexpr text<Char> make_text(basic_string_view<Char> s, size_t pos,
size_t size) {
return {{&s[pos], size}};
}
template <typename Char> struct code_unit {
Char value;
using char_type = Char;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&...) const {
return write<Char>(out, value);
}
};
// This ensures that the argument type is convertible to `const T&`.
template <typename T, int N, typename... Args>
constexpr const T& get_arg_checked(const Args&... args) {
const auto& arg = detail::get<N>(args...);
if constexpr (detail::is_named_arg<remove_cvref_t<decltype(arg)>>()) {
return arg.value;
} else {
return arg;
}
}
template <typename Char>
struct is_compiled_format<code_unit<Char>> : std::true_type {};
// A replacement field that refers to argument N.
template <typename Char, typename T, int N> struct field {
using char_type = Char;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
return write<Char>(out, get_arg_checked<T, N>(args...));
}
};
template <typename Char, typename T, int N>
struct is_compiled_format<field<Char, T, N>> : std::true_type {};
// A replacement field that refers to argument with name.
template <typename Char> struct runtime_named_field {
using char_type = Char;
basic_string_view<Char> name;
template <typename OutputIt, typename T>
constexpr static bool try_format_argument(
OutputIt& out,
// [[maybe_unused]] due to unused-but-set-parameter warning in GCC 7,8,9
[[maybe_unused]] basic_string_view<Char> arg_name, const T& arg) {
if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) {
if (arg_name == arg.name) {
out = write<Char>(out, arg.value);
return true;
}
}
return false;
}
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
bool found = (try_format_argument(out, name, args) || ...);
if (!found) {
FMT_THROW(format_error("argument with specified name is not found"));
}
return out;
}
};
template <typename Char>
struct is_compiled_format<runtime_named_field<Char>> : std::true_type {};
// A replacement field that refers to argument N and has format specifiers.
template <typename Char, typename T, int N> struct spec_field {
using char_type = Char;
formatter<T, Char> fmt;
template <typename OutputIt, typename... Args>
constexpr FMT_INLINE OutputIt format(OutputIt out,
const Args&... args) const {
const auto& vargs =
fmt::make_format_args<basic_format_context<OutputIt, Char>>(args...);
basic_format_context<OutputIt, Char> ctx(out, vargs);
return fmt.format(get_arg_checked<T, N>(args...), ctx);
}
};
template <typename Char, typename T, int N>
struct is_compiled_format<spec_field<Char, T, N>> : std::true_type {};
template <typename L, typename R> struct concat {
L lhs;
R rhs;
using char_type = typename L::char_type;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
out = lhs.format(out, args...);
return rhs.format(out, args...);
}
};
template <typename L, typename R>
struct is_compiled_format<concat<L, R>> : std::true_type {};
template <typename L, typename R>
constexpr concat<L, R> make_concat(L lhs, R rhs) {
return {lhs, rhs};
}
struct unknown_format {};
template <typename Char>
constexpr size_t parse_text(basic_string_view<Char> str, size_t pos) {
for (size_t size = str.size(); pos != size; ++pos) {
if (str[pos] == '{' || str[pos] == '}') break;
}
return pos;
}
template <typename Args, size_t POS, int ID, typename S>
constexpr auto compile_format_string(S format_str);
template <typename Args, size_t POS, int ID, typename T, typename S>
constexpr auto parse_tail(T head, S format_str) {
if constexpr (POS !=
basic_string_view<typename S::char_type>(format_str).size()) {
constexpr auto tail = compile_format_string<Args, POS, ID>(format_str);
if constexpr (std::is_same<remove_cvref_t<decltype(tail)>,
unknown_format>())
return tail;
else
return make_concat(head, tail);
} else {
return head;
}
}
template <typename T, typename Char> struct parse_specs_result {
formatter<T, Char> fmt;
size_t end;
int next_arg_id;
};
enum { manual_indexing_id = -1 };
template <typename T, typename Char>
constexpr parse_specs_result<T, Char> parse_specs(basic_string_view<Char> str,
size_t pos, int next_arg_id) {
str.remove_prefix(pos);
auto ctx =
compile_parse_context<Char>(str, max_value<int>(), nullptr, next_arg_id);
auto f = formatter<T, Char>();
auto end = f.parse(ctx);
return {f, pos + fmt::detail::to_unsigned(end - str.data()),
next_arg_id == 0 ? manual_indexing_id : ctx.next_arg_id()};
}
template <typename Char> struct arg_id_handler {
arg_ref<Char> arg_id;
constexpr int on_auto() {
FMT_ASSERT(false, "handler cannot be used with automatic indexing");
return 0;
}
constexpr int on_index(int id) {
arg_id = arg_ref<Char>(id);
return 0;
}
constexpr int on_name(basic_string_view<Char> id) {
arg_id = arg_ref<Char>(id);
return 0;
}
};
template <typename Char> struct parse_arg_id_result {
arg_ref<Char> arg_id;
const Char* arg_id_end;
};
template <int ID, typename Char>
constexpr auto parse_arg_id(const Char* begin, const Char* end) {
auto handler = arg_id_handler<Char>{arg_ref<Char>{}};
auto arg_id_end = parse_arg_id(begin, end, handler);
return parse_arg_id_result<Char>{handler.arg_id, arg_id_end};
}
template <typename T, typename Enable = void> struct field_type {
using type = remove_cvref_t<T>;
};
template <typename T>
struct field_type<T, enable_if_t<detail::is_named_arg<T>::value>> {
using type = remove_cvref_t<decltype(T::value)>;
};
template <typename T, typename Args, size_t END_POS, int ARG_INDEX, int NEXT_ID,
typename S>
constexpr auto parse_replacement_field_then_tail(S format_str) {
using char_type = typename S::char_type;
constexpr auto str = basic_string_view<char_type>(format_str);
constexpr char_type c = END_POS != str.size() ? str[END_POS] : char_type();
if constexpr (c == '}') {
return parse_tail<Args, END_POS + 1, NEXT_ID>(
field<char_type, typename field_type<T>::type, ARG_INDEX>(),
format_str);
} else if constexpr (c != ':') {
FMT_THROW(format_error("expected ':'"));
} else {
constexpr auto result = parse_specs<typename field_type<T>::type>(
str, END_POS + 1, NEXT_ID == manual_indexing_id ? 0 : NEXT_ID);
if constexpr (result.end >= str.size() || str[result.end] != '}') {
FMT_THROW(format_error("expected '}'"));
return 0;
} else {
return parse_tail<Args, result.end + 1, result.next_arg_id>(
spec_field<char_type, typename field_type<T>::type, ARG_INDEX>{
result.fmt},
format_str);
}
}
}
// Compiles a non-empty format string and returns the compiled representation
// or unknown_format() on unrecognized input.
template <typename Args, size_t POS, int ID, typename S>
constexpr auto compile_format_string(S format_str) {
using char_type = typename S::char_type;
constexpr auto str = basic_string_view<char_type>(format_str);
if constexpr (str[POS] == '{') {
if constexpr (POS + 1 == str.size())
FMT_THROW(format_error("unmatched '{' in format string"));
if constexpr (str[POS + 1] == '{') {
return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str);
} else if constexpr (str[POS + 1] == '}' || str[POS + 1] == ':') {
static_assert(ID != manual_indexing_id,
"cannot switch from manual to automatic argument indexing");
constexpr auto next_id =
ID != manual_indexing_id ? ID + 1 : manual_indexing_id;
return parse_replacement_field_then_tail<get_type<ID, Args>, Args,
POS + 1, ID, next_id>(
format_str);
} else {
constexpr auto arg_id_result =
parse_arg_id<ID>(str.data() + POS + 1, str.data() + str.size());
constexpr auto arg_id_end_pos = arg_id_result.arg_id_end - str.data();
constexpr char_type c =
arg_id_end_pos != str.size() ? str[arg_id_end_pos] : char_type();
static_assert(c == '}' || c == ':', "missing '}' in format string");
if constexpr (arg_id_result.arg_id.kind == arg_id_kind::index) {
static_assert(
ID == manual_indexing_id || ID == 0,
"cannot switch from automatic to manual argument indexing");
constexpr auto arg_index = arg_id_result.arg_id.val.index;
return parse_replacement_field_then_tail<get_type<arg_index, Args>,
Args, arg_id_end_pos,
arg_index, manual_indexing_id>(
format_str);
} else if constexpr (arg_id_result.arg_id.kind == arg_id_kind::name) {
constexpr auto arg_index =
get_arg_index_by_name(arg_id_result.arg_id.val.name, Args{});
if constexpr (arg_index >= 0) {
constexpr auto next_id =
ID != manual_indexing_id ? ID + 1 : manual_indexing_id;
return parse_replacement_field_then_tail<
decltype(get_type<arg_index, Args>::value), Args, arg_id_end_pos,
arg_index, next_id>(format_str);
} else if constexpr (c == '}') {
return parse_tail<Args, arg_id_end_pos + 1, ID>(
runtime_named_field<char_type>{arg_id_result.arg_id.val.name},
format_str);
} else if constexpr (c == ':') {
return unknown_format(); // no type info for specs parsing
}
}
}
} else if constexpr (str[POS] == '}') {
if constexpr (POS + 1 == str.size())
FMT_THROW(format_error("unmatched '}' in format string"));
return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str);
} else {
constexpr auto end = parse_text(str, POS + 1);
if constexpr (end - POS > 1) {
return parse_tail<Args, end, ID>(make_text(str, POS, end - POS),
format_str);
} else {
return parse_tail<Args, end, ID>(code_unit<char_type>{str[POS]},
format_str);
}
}
}
template <typename... Args, typename S,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
constexpr auto compile(S format_str) {
constexpr auto str = basic_string_view<typename S::char_type>(format_str);
if constexpr (str.size() == 0) {
return detail::make_text(str, 0, 0);
} else {
constexpr auto result =
detail::compile_format_string<detail::type_list<Args...>, 0, 0>(
format_str);
return result;
}
}
#endif // defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction)
} // namespace detail
FMT_BEGIN_EXPORT
#if defined(__cpp_if_constexpr) && defined(__cpp_return_type_deduction)
template <typename CompiledFormat, typename... Args,
typename Char = typename CompiledFormat::char_type,
FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)>
FMT_INLINE std::basic_string<Char> format(const CompiledFormat& cf,
const Args&... args) {
auto s = std::basic_string<Char>();
cf.format(std::back_inserter(s), args...);
return s;
}
template <typename OutputIt, typename CompiledFormat, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)>
constexpr FMT_INLINE OutputIt format_to(OutputIt out, const CompiledFormat& cf,
const Args&... args) {
return cf.format(out, args...);
}
template <typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
FMT_INLINE std::basic_string<typename S::char_type> format(const S&,
Args&&... args) {
if constexpr (std::is_same<typename S::char_type, char>::value) {
constexpr auto str = basic_string_view<typename S::char_type>(S());
if constexpr (str.size() == 2 && str[0] == '{' && str[1] == '}') {
const auto& first = detail::first(args...);
if constexpr (detail::is_named_arg<
remove_cvref_t<decltype(first)>>::value) {
return fmt::to_string(first.value);
} else {
return fmt::to_string(first);
}
}
}
constexpr auto compiled = detail::compile<Args...>(S());
if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>,
detail::unknown_format>()) {
return fmt::format(
static_cast<basic_string_view<typename S::char_type>>(S()),
std::forward<Args>(args)...);
} else {
return fmt::format(compiled, std::forward<Args>(args)...);
}
}
template <typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
FMT_CONSTEXPR OutputIt format_to(OutputIt out, const S&, Args&&... args) {
constexpr auto compiled = detail::compile<Args...>(S());
if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>,
detail::unknown_format>()) {
return fmt::format_to(
out, static_cast<basic_string_view<typename S::char_type>>(S()),
std::forward<Args>(args)...);
} else {
return fmt::format_to(out, compiled, std::forward<Args>(args)...);
}
}
#endif
template <typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n,
const S& format_str, Args&&... args) {
auto it = fmt::format_to(detail::truncating_iterator<OutputIt>(out, n),
format_str, std::forward<Args>(args)...);
return {it.base(), it.count()};
}
template <typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
FMT_CONSTEXPR20 size_t formatted_size(const S& format_str,
const Args&... args) {
return fmt::format_to(detail::counting_iterator(), format_str, args...)
.count();
}
template <typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
void print(std::FILE* f, const S& format_str, const Args&... args) {
memory_buffer buffer;
fmt::format_to(std::back_inserter(buffer), format_str, args...);
detail::print(f, {buffer.data(), buffer.size()});
}
template <typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
void print(const S& format_str, const Args&... args) {
print(stdout, format_str, args...);
}
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
inline namespace literals {
template <detail_exported::fixed_string Str> constexpr auto operator""_cf() {
using char_t = remove_cvref_t<decltype(Str.data[0])>;
return detail::udl_compiled_string<char_t, sizeof(Str.data) / sizeof(char_t),
Str>();
}
} // namespace literals
#endif
FMT_END_EXPORT
FMT_END_NAMESPACE
#endif // FMT_COMPILE_H_

2905
include/fmt/core.h Normal file

File diff suppressed because it is too large Load diff

1662
include/fmt/format-inl.h Normal file

File diff suppressed because it is too large Load diff

4731
include/fmt/format.h Normal file

File diff suppressed because it is too large Load diff

451
include/fmt/os.h Normal file
View file

@ -0,0 +1,451 @@
// Formatting library for C++ - optional OS-specific functionality
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_OS_H_
#define FMT_OS_H_
#include <cerrno>
#include <cstddef>
#include <cstdio>
#include <system_error> // std::system_error
#if defined __APPLE__ || defined(__FreeBSD__)
# include <xlocale.h> // for LC_NUMERIC_MASK on OS X
#endif
#include "format.h"
#ifndef FMT_USE_FCNTL
// UWP doesn't provide _pipe.
# if FMT_HAS_INCLUDE("winapifamily.h")
# include <winapifamily.h>
# endif
# if (FMT_HAS_INCLUDE(<fcntl.h>) || defined(__APPLE__) || \
defined(__linux__)) && \
(!defined(WINAPI_FAMILY) || \
(WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
# include <fcntl.h> // for O_RDONLY
# define FMT_USE_FCNTL 1
# else
# define FMT_USE_FCNTL 0
# endif
#endif
#ifndef FMT_POSIX
# if defined(_WIN32) && !defined(__MINGW32__)
// Fix warnings about deprecated symbols.
# define FMT_POSIX(call) _##call
# else
# define FMT_POSIX(call) call
# endif
#endif
// Calls to system functions are wrapped in FMT_SYSTEM for testability.
#ifdef FMT_SYSTEM
# define FMT_POSIX_CALL(call) FMT_SYSTEM(call)
#else
# define FMT_SYSTEM(call) ::call
# ifdef _WIN32
// Fix warnings about deprecated symbols.
# define FMT_POSIX_CALL(call) ::_##call
# else
# define FMT_POSIX_CALL(call) ::call
# endif
#endif
// Retries the expression while it evaluates to error_result and errno
// equals to EINTR.
#ifndef _WIN32
# define FMT_RETRY_VAL(result, expression, error_result) \
do { \
(result) = (expression); \
} while ((result) == (error_result) && errno == EINTR)
#else
# define FMT_RETRY_VAL(result, expression, error_result) result = (expression)
#endif
#define FMT_RETRY(result, expression) FMT_RETRY_VAL(result, expression, -1)
FMT_BEGIN_NAMESPACE
FMT_BEGIN_EXPORT
/**
\rst
A reference to a null-terminated string. It can be constructed from a C
string or ``std::string``.
You can use one of the following type aliases for common character types:
+---------------+-----------------------------+
| Type | Definition |
+===============+=============================+
| cstring_view | basic_cstring_view<char> |
+---------------+-----------------------------+
| wcstring_view | basic_cstring_view<wchar_t> |
+---------------+-----------------------------+
This class is most useful as a parameter type to allow passing
different types of strings to a function, for example::
template <typename... Args>
std::string format(cstring_view format_str, const Args & ... args);
format("{}", 42);
format(std::string("{}"), 42);
\endrst
*/
template <typename Char> class basic_cstring_view {
private:
const Char* data_;
public:
/** Constructs a string reference object from a C string. */
basic_cstring_view(const Char* s) : data_(s) {}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
basic_cstring_view(const std::basic_string<Char>& s) : data_(s.c_str()) {}
/** Returns the pointer to a C string. */
const Char* c_str() const { return data_; }
};
using cstring_view = basic_cstring_view<char>;
using wcstring_view = basic_cstring_view<wchar_t>;
#ifdef _WIN32
FMT_API const std::error_category& system_category() noexcept;
FMT_BEGIN_DETAIL_NAMESPACE
FMT_API void format_windows_error(buffer<char>& out, int error_code,
const char* message) noexcept;
FMT_END_DETAIL_NAMESPACE
FMT_API std::system_error vwindows_error(int error_code, string_view format_str,
format_args args);
/**
\rst
Constructs a :class:`std::system_error` object with the description
of the form
.. parsed-literal::
*<message>*: *<system-message>*
where *<message>* is the formatted message and *<system-message>* is the
system message corresponding to the error code.
*error_code* is a Windows error code as given by ``GetLastError``.
If *error_code* is not a valid error code such as -1, the system message
will look like "error -1".
**Example**::
// This throws a system_error with the description
// cannot open file 'madeup': The system cannot find the file specified.
// or similar (system message may vary).
const char *filename = "madeup";
LPOFSTRUCT of = LPOFSTRUCT();
HFILE file = OpenFile(filename, &of, OF_READ);
if (file == HFILE_ERROR) {
throw fmt::windows_error(GetLastError(),
"cannot open file '{}'", filename);
}
\endrst
*/
template <typename... Args>
std::system_error windows_error(int error_code, string_view message,
const Args&... args) {
return vwindows_error(error_code, message, fmt::make_format_args(args...));
}
// Reports a Windows error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_windows_error(int error_code, const char* message) noexcept;
#else
inline const std::error_category& system_category() noexcept {
return std::system_category();
}
#endif // _WIN32
// std::system is not available on some platforms such as iOS (#2248).
#ifdef __OSX__
template <typename S, typename... Args, typename Char = char_t<S>>
void say(const S& format_str, Args&&... args) {
std::system(format("say \"{}\"", format(format_str, args...)).c_str());
}
#endif
// A buffered file.
class buffered_file {
private:
FILE* file_;
friend class file;
explicit buffered_file(FILE* f) : file_(f) {}
public:
buffered_file(const buffered_file&) = delete;
void operator=(const buffered_file&) = delete;
// Constructs a buffered_file object which doesn't represent any file.
buffered_file() noexcept : file_(nullptr) {}
// Destroys the object closing the file it represents if any.
FMT_API ~buffered_file() noexcept;
public:
buffered_file(buffered_file&& other) noexcept : file_(other.file_) {
other.file_ = nullptr;
}
buffered_file& operator=(buffered_file&& other) {
close();
file_ = other.file_;
other.file_ = nullptr;
return *this;
}
// Opens a file.
FMT_API buffered_file(cstring_view filename, cstring_view mode);
// Closes the file.
FMT_API void close();
// Returns the pointer to a FILE object representing this file.
FILE* get() const noexcept { return file_; }
FMT_API int descriptor() const;
void vprint(string_view format_str, format_args args) {
fmt::vprint(file_, format_str, args);
}
template <typename... Args>
inline void print(string_view format_str, const Args&... args) {
vprint(format_str, fmt::make_format_args(args...));
}
};
#if FMT_USE_FCNTL
// A file. Closed file is represented by a file object with descriptor -1.
// Methods that are not declared with noexcept may throw
// fmt::system_error in case of failure. Note that some errors such as
// closing the file multiple times will cause a crash on Windows rather
// than an exception. You can get standard behavior by overriding the
// invalid parameter handler with _set_invalid_parameter_handler.
class FMT_API file {
private:
int fd_; // File descriptor.
// Constructs a file object with a given descriptor.
explicit file(int fd) : fd_(fd) {}
public:
// Possible values for the oflag argument to the constructor.
enum {
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR), // Open for reading and writing.
CREATE = FMT_POSIX(O_CREAT), // Create if the file doesn't exist.
APPEND = FMT_POSIX(O_APPEND), // Open in append mode.
TRUNC = FMT_POSIX(O_TRUNC) // Truncate the content of the file.
};
// Constructs a file object which doesn't represent any file.
file() noexcept : fd_(-1) {}
// Opens a file and constructs a file object representing this file.
file(cstring_view path, int oflag);
public:
file(const file&) = delete;
void operator=(const file&) = delete;
file(file&& other) noexcept : fd_(other.fd_) { other.fd_ = -1; }
// Move assignment is not noexcept because close may throw.
file& operator=(file&& other) {
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// Destroys the object closing the file it represents if any.
~file() noexcept;
// Returns the file descriptor.
int descriptor() const noexcept { return fd_; }
// Closes the file.
void close();
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
long long size() const;
// Attempts to read count bytes from the file into the specified buffer.
size_t read(void* buffer, size_t count);
// Attempts to write count bytes from the specified buffer to the file.
size_t write(const void* buffer, size_t count);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
static file dup(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
void dup2(int fd, std::error_code& ec) noexcept;
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
static void pipe(file& read_end, file& write_end);
// Creates a buffered_file object associated with this file and detaches
// this file object from the file.
buffered_file fdopen(const char* mode);
# if defined(_WIN32) && !defined(__MINGW32__)
// Opens a file and constructs a file object representing this file by
// wcstring_view filename. Windows only.
static file open_windows_file(wcstring_view path, int oflag);
# endif
};
// Returns the memory page size.
long getpagesize();
FMT_BEGIN_DETAIL_NAMESPACE
struct buffer_size {
buffer_size() = default;
size_t value = 0;
buffer_size operator=(size_t val) const {
auto bs = buffer_size();
bs.value = val;
return bs;
}
};
struct ostream_params {
int oflag = file::WRONLY | file::CREATE | file::TRUNC;
size_t buffer_size = BUFSIZ > 32768 ? BUFSIZ : 32768;
ostream_params() {}
template <typename... T>
ostream_params(T... params, int new_oflag) : ostream_params(params...) {
oflag = new_oflag;
}
template <typename... T>
ostream_params(T... params, detail::buffer_size bs)
: ostream_params(params...) {
this->buffer_size = bs.value;
}
// Intel has a bug that results in failure to deduce a constructor
// for empty parameter packs.
# if defined(__INTEL_COMPILER) && __INTEL_COMPILER < 2000
ostream_params(int new_oflag) : oflag(new_oflag) {}
ostream_params(detail::buffer_size bs) : buffer_size(bs.value) {}
# endif
};
class file_buffer final : public buffer<char> {
file file_;
FMT_API void grow(size_t) override;
public:
FMT_API file_buffer(cstring_view path, const ostream_params& params);
FMT_API file_buffer(file_buffer&& other);
FMT_API ~file_buffer();
void flush() {
if (size() == 0) return;
file_.write(data(), size() * sizeof(data()[0]));
clear();
}
void close() {
flush();
file_.close();
}
};
FMT_END_DETAIL_NAMESPACE
// Added {} below to work around default constructor error known to
// occur in Xcode versions 7.2.1 and 8.2.1.
constexpr detail::buffer_size buffer_size{};
/** A fast output stream which is not thread-safe. */
class FMT_API ostream {
private:
FMT_MSC_WARNING(suppress : 4251)
detail::file_buffer buffer_;
ostream(cstring_view path, const detail::ostream_params& params)
: buffer_(path, params) {}
public:
ostream(ostream&& other) : buffer_(std::move(other.buffer_)) {}
~ostream();
void flush() { buffer_.flush(); }
template <typename... T>
friend ostream output_file(cstring_view path, T... params);
void close() { buffer_.close(); }
/**
Formats ``args`` according to specifications in ``fmt`` and writes the
output to the file.
*/
template <typename... T> void print(format_string<T...> fmt, T&&... args) {
vformat_to(detail::buffer_appender<char>(buffer_), fmt,
fmt::make_format_args(args...));
}
};
/**
\rst
Opens a file for writing. Supported parameters passed in *params*:
* ``<integer>``: Flags passed to `open
<https://pubs.opengroup.org/onlinepubs/007904875/functions/open.html>`_
(``file::WRONLY | file::CREATE | file::TRUNC`` by default)
* ``buffer_size=<integer>``: Output buffer size
**Example**::
auto out = fmt::output_file("guide.txt");
out.print("Don't {}", "Panic");
\endrst
*/
template <typename... T>
inline ostream output_file(cstring_view path, T... params) {
return {path, detail::ostream_params(params...)};
}
#endif // FMT_USE_FCNTL
FMT_END_EXPORT
FMT_END_NAMESPACE
#endif // FMT_OS_H_

209
include/fmt/ostream.h Normal file
View file

@ -0,0 +1,209 @@
// Formatting library for C++ - std::ostream support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_OSTREAM_H_
#define FMT_OSTREAM_H_
#include <fstream> // std::filebuf
#if defined(_WIN32) && defined(__GLIBCXX__)
# include <ext/stdio_filebuf.h>
# include <ext/stdio_sync_filebuf.h>
#elif defined(_WIN32) && defined(_LIBCPP_VERSION)
# include <__std_stream>
#endif
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace detail {
// Generate a unique explicit instantion in every translation unit using a tag
// type in an anonymous namespace.
namespace {
struct file_access_tag {};
} // namespace
template <typename Tag, typename BufType, FILE* BufType::*FileMemberPtr>
class file_access {
friend auto get_file(BufType& obj) -> FILE* { return obj.*FileMemberPtr; }
};
#if FMT_MSC_VERSION
template class file_access<file_access_tag, std::filebuf,
&std::filebuf::_Myfile>;
auto get_file(std::filebuf&) -> FILE*;
#elif defined(_WIN32) && defined(_LIBCPP_VERSION)
template class file_access<file_access_tag, std::__stdoutbuf<char>,
&std::__stdoutbuf<char>::__file_>;
auto get_file(std::__stdoutbuf<char>&) -> FILE*;
#endif
inline bool write_ostream_unicode(std::ostream& os, fmt::string_view data) {
#if FMT_MSC_VERSION
if (auto* buf = dynamic_cast<std::filebuf*>(os.rdbuf()))
if (FILE* f = get_file(*buf)) return write_console(f, data);
#elif defined(_WIN32) && defined(__GLIBCXX__)
auto* rdbuf = os.rdbuf();
FILE* c_file;
if (auto* sfbuf = dynamic_cast<__gnu_cxx::stdio_sync_filebuf<char>*>(rdbuf))
c_file = sfbuf->file();
else if (auto* fbuf = dynamic_cast<__gnu_cxx::stdio_filebuf<char>*>(rdbuf))
c_file = fbuf->file();
else
return false;
if (c_file) return write_console(c_file, data);
#elif defined(_WIN32) && defined(_LIBCPP_VERSION)
if (auto* buf = dynamic_cast<std::__stdoutbuf<char>*>(os.rdbuf()))
if (FILE* f = get_file(*buf)) return write_console(f, data);
#else
ignore_unused(os, data);
#endif
return false;
}
inline bool write_ostream_unicode(std::wostream&,
fmt::basic_string_view<wchar_t>) {
return false;
}
// Write the content of buf to os.
// It is a separate function rather than a part of vprint to simplify testing.
template <typename Char>
void write_buffer(std::basic_ostream<Char>& os, buffer<Char>& buf) {
const Char* buf_data = buf.data();
using unsigned_streamsize = std::make_unsigned<std::streamsize>::type;
unsigned_streamsize size = buf.size();
unsigned_streamsize max_size = to_unsigned(max_value<std::streamsize>());
do {
unsigned_streamsize n = size <= max_size ? size : max_size;
os.write(buf_data, static_cast<std::streamsize>(n));
buf_data += n;
size -= n;
} while (size != 0);
}
template <typename Char, typename T>
void format_value(buffer<Char>& buf, const T& value,
locale_ref loc = locale_ref()) {
auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
auto&& output = std::basic_ostream<Char>(&format_buf);
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
if (loc) output.imbue(loc.get<std::locale>());
#endif
output << value;
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
}
template <typename T> struct streamed_view { const T& value; };
} // namespace detail
// Formats an object of type T that has an overloaded ostream operator<<.
template <typename Char>
struct basic_ostream_formatter : formatter<basic_string_view<Char>, Char> {
void set_debug_format() = delete;
template <typename T, typename OutputIt>
auto format(const T& value, basic_format_context<OutputIt, Char>& ctx) const
-> OutputIt {
auto buffer = basic_memory_buffer<Char>();
detail::format_value(buffer, value, ctx.locale());
return formatter<basic_string_view<Char>, Char>::format(
{buffer.data(), buffer.size()}, ctx);
}
};
using ostream_formatter = basic_ostream_formatter<char>;
template <typename T, typename Char>
struct formatter<detail::streamed_view<T>, Char>
: basic_ostream_formatter<Char> {
template <typename OutputIt>
auto format(detail::streamed_view<T> view,
basic_format_context<OutputIt, Char>& ctx) const -> OutputIt {
return basic_ostream_formatter<Char>::format(view.value, ctx);
}
};
/**
\rst
Returns a view that formats `value` via an ostream ``operator<<``.
**Example**::
fmt::print("Current thread id: {}\n",
fmt::streamed(std::this_thread::get_id()));
\endrst
*/
template <typename T>
auto streamed(const T& value) -> detail::streamed_view<T> {
return {value};
}
namespace detail {
inline void vprint_directly(std::ostream& os, string_view format_str,
format_args args) {
auto buffer = memory_buffer();
detail::vformat_to(buffer, format_str, args);
detail::write_buffer(os, buffer);
}
} // namespace detail
FMT_EXPORT template <typename Char>
void vprint(std::basic_ostream<Char>& os,
basic_string_view<type_identity_t<Char>> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
auto buffer = basic_memory_buffer<Char>();
detail::vformat_to(buffer, format_str, args);
if (detail::write_ostream_unicode(os, {buffer.data(), buffer.size()})) return;
detail::write_buffer(os, buffer);
}
/**
\rst
Prints formatted data to the stream *os*.
**Example**::
fmt::print(cerr, "Don't {}!", "panic");
\endrst
*/
FMT_EXPORT template <typename... T>
void print(std::ostream& os, format_string<T...> fmt, T&&... args) {
const auto& vargs = fmt::make_format_args(args...);
if (detail::is_utf8())
vprint(os, fmt, vargs);
else
detail::vprint_directly(os, fmt, vargs);
}
FMT_EXPORT
template <typename... Args>
void print(std::wostream& os,
basic_format_string<wchar_t, type_identity_t<Args>...> fmt,
Args&&... args) {
vprint(os, fmt, fmt::make_format_args<buffer_context<wchar_t>>(args...));
}
FMT_EXPORT template <typename... T>
void println(std::ostream& os, format_string<T...> fmt, T&&... args) {
fmt::print(os, "{}\n", fmt::format(fmt, std::forward<T>(args)...));
}
FMT_EXPORT
template <typename... Args>
void println(std::wostream& os,
basic_format_string<wchar_t, type_identity_t<Args>...> fmt,
Args&&... args) {
print(os, L"{}\n", fmt::format(fmt, std::forward<Args>(args)...));
}
FMT_END_NAMESPACE
#endif // FMT_OSTREAM_H_

667
include/fmt/printf.h Normal file
View file

@ -0,0 +1,667 @@
// Formatting library for C++ - legacy printf implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_PRINTF_H_
#define FMT_PRINTF_H_
#include <algorithm> // std::max
#include <limits> // std::numeric_limits
#include "format.h"
FMT_BEGIN_NAMESPACE
FMT_BEGIN_EXPORT
template <typename T> struct printf_formatter { printf_formatter() = delete; };
template <typename Char> class basic_printf_context {
private:
detail::buffer_appender<Char> out_;
basic_format_args<basic_printf_context> args_;
public:
using char_type = Char;
using parse_context_type = basic_format_parse_context<Char>;
template <typename T> using formatter_type = printf_formatter<T>;
/**
\rst
Constructs a ``printf_context`` object. References to the arguments are
stored in the context object so make sure they have appropriate lifetimes.
\endrst
*/
basic_printf_context(detail::buffer_appender<Char> out,
basic_format_args<basic_printf_context> args)
: out_(out), args_(args) {}
auto out() -> detail::buffer_appender<Char> { return out_; }
void advance_to(detail::buffer_appender<Char>) {}
auto locale() -> detail::locale_ref { return {}; }
auto arg(int id) const -> basic_format_arg<basic_printf_context> {
return args_.get(id);
}
FMT_CONSTEXPR void on_error(const char* message) {
detail::error_handler().on_error(message);
}
};
FMT_BEGIN_DETAIL_NAMESPACE
// Checks if a value fits in int - used to avoid warnings about comparing
// signed and unsigned integers.
template <bool IsSigned> struct int_checker {
template <typename T> static auto fits_in_int(T value) -> bool {
unsigned max = max_value<int>();
return value <= max;
}
static auto fits_in_int(bool) -> bool { return true; }
};
template <> struct int_checker<true> {
template <typename T> static auto fits_in_int(T value) -> bool {
return value >= (std::numeric_limits<int>::min)() &&
value <= max_value<int>();
}
static auto fits_in_int(int) -> bool { return true; }
};
struct printf_precision_handler {
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
auto operator()(T value) -> int {
if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
throw_format_error("number is too big");
return (std::max)(static_cast<int>(value), 0);
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
auto operator()(T) -> int {
throw_format_error("precision is not integer");
return 0;
}
};
// An argument visitor that returns true iff arg is a zero integer.
struct is_zero_int {
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
auto operator()(T value) -> bool {
return value == 0;
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
auto operator()(T) -> bool {
return false;
}
};
template <typename T> struct make_unsigned_or_bool : std::make_unsigned<T> {};
template <> struct make_unsigned_or_bool<bool> { using type = bool; };
template <typename T, typename Context> class arg_converter {
private:
using char_type = typename Context::char_type;
basic_format_arg<Context>& arg_;
char_type type_;
public:
arg_converter(basic_format_arg<Context>& arg, char_type type)
: arg_(arg), type_(type) {}
void operator()(bool value) {
if (type_ != 's') operator()<bool>(value);
}
template <typename U, FMT_ENABLE_IF(std::is_integral<U>::value)>
void operator()(U value) {
bool is_signed = type_ == 'd' || type_ == 'i';
using target_type = conditional_t<std::is_same<T, void>::value, U, T>;
if (const_check(sizeof(target_type) <= sizeof(int))) {
// Extra casts are used to silence warnings.
if (is_signed) {
auto n = static_cast<int>(static_cast<target_type>(value));
arg_ = detail::make_arg<Context>(n);
} else {
using unsigned_type = typename make_unsigned_or_bool<target_type>::type;
auto n = static_cast<unsigned>(static_cast<unsigned_type>(value));
arg_ = detail::make_arg<Context>(n);
}
} else {
if (is_signed) {
// glibc's printf doesn't sign extend arguments of smaller types:
// std::printf("%lld", -42); // prints "4294967254"
// but we don't have to do the same because it's a UB.
auto n = static_cast<long long>(value);
arg_ = detail::make_arg<Context>(n);
} else {
auto n = static_cast<typename make_unsigned_or_bool<U>::type>(value);
arg_ = detail::make_arg<Context>(n);
}
}
}
template <typename U, FMT_ENABLE_IF(!std::is_integral<U>::value)>
void operator()(U) {} // No conversion needed for non-integral types.
};
// Converts an integer argument to T for printf, if T is an integral type.
// If T is void, the argument is converted to corresponding signed or unsigned
// type depending on the type specifier: 'd' and 'i' - signed, other -
// unsigned).
template <typename T, typename Context, typename Char>
void convert_arg(basic_format_arg<Context>& arg, Char type) {
visit_format_arg(arg_converter<T, Context>(arg, type), arg);
}
// Converts an integer argument to char for printf.
template <typename Context> class char_converter {
private:
basic_format_arg<Context>& arg_;
public:
explicit char_converter(basic_format_arg<Context>& arg) : arg_(arg) {}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
void operator()(T value) {
auto c = static_cast<typename Context::char_type>(value);
arg_ = detail::make_arg<Context>(c);
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
void operator()(T) {} // No conversion needed for non-integral types.
};
// An argument visitor that return a pointer to a C string if argument is a
// string or null otherwise.
template <typename Char> struct get_cstring {
template <typename T> auto operator()(T) -> const Char* { return nullptr; }
auto operator()(const Char* s) -> const Char* { return s; }
};
// Checks if an argument is a valid printf width specifier and sets
// left alignment if it is negative.
template <typename Char> class printf_width_handler {
private:
format_specs<Char>& specs_;
public:
explicit printf_width_handler(format_specs<Char>& specs) : specs_(specs) {}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
auto operator()(T value) -> unsigned {
auto width = static_cast<uint32_or_64_or_128_t<T>>(value);
if (detail::is_negative(value)) {
specs_.align = align::left;
width = 0 - width;
}
unsigned int_max = max_value<int>();
if (width > int_max) throw_format_error("number is too big");
return static_cast<unsigned>(width);
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
auto operator()(T) -> unsigned {
throw_format_error("width is not integer");
return 0;
}
};
// Workaround for a bug with the XL compiler when initializing
// printf_arg_formatter's base class.
template <typename Char>
auto make_arg_formatter(buffer_appender<Char> iter, format_specs<Char>& s)
-> arg_formatter<Char> {
return {iter, s, locale_ref()};
}
// The ``printf`` argument formatter.
template <typename Char>
class printf_arg_formatter : public arg_formatter<Char> {
private:
using base = arg_formatter<Char>;
using context_type = basic_printf_context<Char>;
context_type& context_;
void write_null_pointer(bool is_string = false) {
auto s = this->specs;
s.type = presentation_type::none;
write_bytes(this->out, is_string ? "(null)" : "(nil)", s);
}
public:
printf_arg_formatter(buffer_appender<Char> iter, format_specs<Char>& s,
context_type& ctx)
: base(make_arg_formatter(iter, s)), context_(ctx) {}
void operator()(monostate value) { base::operator()(value); }
template <typename T, FMT_ENABLE_IF(detail::is_integral<T>::value)>
void operator()(T value) {
// MSVC2013 fails to compile separate overloads for bool and Char so use
// std::is_same instead.
if (!std::is_same<T, Char>::value) {
base::operator()(value);
return;
}
format_specs<Char> fmt_specs = this->specs;
if (fmt_specs.type != presentation_type::none &&
fmt_specs.type != presentation_type::chr) {
return (*this)(static_cast<int>(value));
}
fmt_specs.sign = sign::none;
fmt_specs.alt = false;
fmt_specs.fill[0] = ' '; // Ignore '0' flag for char types.
// align::numeric needs to be overwritten here since the '0' flag is
// ignored for non-numeric types
if (fmt_specs.align == align::none || fmt_specs.align == align::numeric)
fmt_specs.align = align::right;
write<Char>(this->out, static_cast<Char>(value), fmt_specs);
}
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
void operator()(T value) {
base::operator()(value);
}
/** Formats a null-terminated C string. */
void operator()(const char* value) {
if (value)
base::operator()(value);
else
write_null_pointer(this->specs.type != presentation_type::pointer);
}
/** Formats a null-terminated wide C string. */
void operator()(const wchar_t* value) {
if (value)
base::operator()(value);
else
write_null_pointer(this->specs.type != presentation_type::pointer);
}
void operator()(basic_string_view<Char> value) { base::operator()(value); }
/** Formats a pointer. */
void operator()(const void* value) {
if (value)
base::operator()(value);
else
write_null_pointer();
}
/** Formats an argument of a custom (user-defined) type. */
void operator()(typename basic_format_arg<context_type>::handle handle) {
auto parse_ctx = basic_format_parse_context<Char>({});
handle.format(parse_ctx, context_);
}
};
template <typename Char>
void parse_flags(format_specs<Char>& specs, const Char*& it, const Char* end) {
for (; it != end; ++it) {
switch (*it) {
case '-':
specs.align = align::left;
break;
case '+':
specs.sign = sign::plus;
break;
case '0':
specs.fill[0] = '0';
break;
case ' ':
if (specs.sign != sign::plus) specs.sign = sign::space;
break;
case '#':
specs.alt = true;
break;
default:
return;
}
}
}
template <typename Char, typename GetArg>
auto parse_header(const Char*& it, const Char* end, format_specs<Char>& specs,
GetArg get_arg) -> int {
int arg_index = -1;
Char c = *it;
if (c >= '0' && c <= '9') {
// Parse an argument index (if followed by '$') or a width possibly
// preceded with '0' flag(s).
int value = parse_nonnegative_int(it, end, -1);
if (it != end && *it == '$') { // value is an argument index
++it;
arg_index = value != -1 ? value : max_value<int>();
} else {
if (c == '0') specs.fill[0] = '0';
if (value != 0) {
// Nonzero value means that we parsed width and don't need to
// parse it or flags again, so return now.
if (value == -1) throw_format_error("number is too big");
specs.width = value;
return arg_index;
}
}
}
parse_flags(specs, it, end);
// Parse width.
if (it != end) {
if (*it >= '0' && *it <= '9') {
specs.width = parse_nonnegative_int(it, end, -1);
if (specs.width == -1) throw_format_error("number is too big");
} else if (*it == '*') {
++it;
specs.width = static_cast<int>(visit_format_arg(
detail::printf_width_handler<Char>(specs), get_arg(-1)));
}
}
return arg_index;
}
inline auto parse_printf_presentation_type(char c, type t)
-> presentation_type {
using pt = presentation_type;
constexpr auto integral_set = sint_set | uint_set | bool_set | char_set;
switch (c) {
case 'd':
return in(t, integral_set) ? pt::dec : pt::none;
case 'o':
return in(t, integral_set) ? pt::oct : pt::none;
case 'x':
return in(t, integral_set) ? pt::hex_lower : pt::none;
case 'X':
return in(t, integral_set) ? pt::hex_upper : pt::none;
case 'a':
return in(t, float_set) ? pt::hexfloat_lower : pt::none;
case 'A':
return in(t, float_set) ? pt::hexfloat_upper : pt::none;
case 'e':
return in(t, float_set) ? pt::exp_lower : pt::none;
case 'E':
return in(t, float_set) ? pt::exp_upper : pt::none;
case 'f':
return in(t, float_set) ? pt::fixed_lower : pt::none;
case 'F':
return in(t, float_set) ? pt::fixed_upper : pt::none;
case 'g':
return in(t, float_set) ? pt::general_lower : pt::none;
case 'G':
return in(t, float_set) ? pt::general_upper : pt::none;
case 'c':
return in(t, integral_set) ? pt::chr : pt::none;
case 's':
return in(t, string_set | cstring_set) ? pt::string : pt::none;
case 'p':
return in(t, pointer_set | cstring_set) ? pt::pointer : pt::none;
default:
return pt::none;
}
}
template <typename Char, typename Context>
void vprintf(buffer<Char>& buf, basic_string_view<Char> format,
basic_format_args<Context> args) {
using iterator = buffer_appender<Char>;
auto out = iterator(buf);
auto context = basic_printf_context<Char>(out, args);
auto parse_ctx = basic_format_parse_context<Char>(format);
// Returns the argument with specified index or, if arg_index is -1, the next
// argument.
auto get_arg = [&](int arg_index) {
if (arg_index < 0)
arg_index = parse_ctx.next_arg_id();
else
parse_ctx.check_arg_id(--arg_index);
return detail::get_arg(context, arg_index);
};
const Char* start = parse_ctx.begin();
const Char* end = parse_ctx.end();
auto it = start;
while (it != end) {
if (!find<false, Char>(it, end, '%', it)) {
it = end; // find leaves it == nullptr if it doesn't find '%'.
break;
}
Char c = *it++;
if (it != end && *it == c) {
write(out, basic_string_view<Char>(start, to_unsigned(it - start)));
start = ++it;
continue;
}
write(out, basic_string_view<Char>(start, to_unsigned(it - 1 - start)));
auto specs = format_specs<Char>();
specs.align = align::right;
// Parse argument index, flags and width.
int arg_index = parse_header(it, end, specs, get_arg);
if (arg_index == 0) throw_format_error("argument not found");
// Parse precision.
if (it != end && *it == '.') {
++it;
c = it != end ? *it : 0;
if ('0' <= c && c <= '9') {
specs.precision = parse_nonnegative_int(it, end, 0);
} else if (c == '*') {
++it;
specs.precision = static_cast<int>(
visit_format_arg(printf_precision_handler(), get_arg(-1)));
} else {
specs.precision = 0;
}
}
auto arg = get_arg(arg_index);
// For d, i, o, u, x, and X conversion specifiers, if a precision is
// specified, the '0' flag is ignored
if (specs.precision >= 0 && arg.is_integral()) {
// Ignore '0' for non-numeric types or if '-' present.
specs.fill[0] = ' ';
}
if (specs.precision >= 0 && arg.type() == type::cstring_type) {
auto str = visit_format_arg(get_cstring<Char>(), arg);
auto str_end = str + specs.precision;
auto nul = std::find(str, str_end, Char());
auto sv = basic_string_view<Char>(
str, to_unsigned(nul != str_end ? nul - str : specs.precision));
arg = make_arg<basic_printf_context<Char>>(sv);
}
if (specs.alt && visit_format_arg(is_zero_int(), arg)) specs.alt = false;
if (specs.fill[0] == '0') {
if (arg.is_arithmetic() && specs.align != align::left)
specs.align = align::numeric;
else
specs.fill[0] = ' '; // Ignore '0' flag for non-numeric types or if '-'
// flag is also present.
}
// Parse length and convert the argument to the required type.
c = it != end ? *it++ : 0;
Char t = it != end ? *it : 0;
switch (c) {
case 'h':
if (t == 'h') {
++it;
t = it != end ? *it : 0;
convert_arg<signed char>(arg, t);
} else {
convert_arg<short>(arg, t);
}
break;
case 'l':
if (t == 'l') {
++it;
t = it != end ? *it : 0;
convert_arg<long long>(arg, t);
} else {
convert_arg<long>(arg, t);
}
break;
case 'j':
convert_arg<intmax_t>(arg, t);
break;
case 'z':
convert_arg<size_t>(arg, t);
break;
case 't':
convert_arg<std::ptrdiff_t>(arg, t);
break;
case 'L':
// printf produces garbage when 'L' is omitted for long double, no
// need to do the same.
break;
default:
--it;
convert_arg<void>(arg, c);
}
// Parse type.
if (it == end) throw_format_error("invalid format string");
char type = static_cast<char>(*it++);
if (arg.is_integral()) {
// Normalize type.
switch (type) {
case 'i':
case 'u':
type = 'd';
break;
case 'c':
visit_format_arg(char_converter<basic_printf_context<Char>>(arg), arg);
break;
}
}
specs.type = parse_printf_presentation_type(type, arg.type());
if (specs.type == presentation_type::none)
throw_format_error("invalid format specifier");
start = it;
// Format argument.
visit_format_arg(printf_arg_formatter<Char>(out, specs, context), arg);
}
write(out, basic_string_view<Char>(start, to_unsigned(it - start)));
}
FMT_END_DETAIL_NAMESPACE
using printf_context = basic_printf_context<char>;
using wprintf_context = basic_printf_context<wchar_t>;
using printf_args = basic_format_args<printf_context>;
using wprintf_args = basic_format_args<wprintf_context>;
/**
\rst
Constructs an `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::printf_args`.
\endrst
*/
template <typename... T>
inline auto make_printf_args(const T&... args)
-> format_arg_store<printf_context, T...> {
return {args...};
}
// DEPRECATED!
template <typename... T>
inline auto make_wprintf_args(const T&... args)
-> format_arg_store<wprintf_context, T...> {
return {args...};
}
template <typename Char>
inline auto vsprintf(
basic_string_view<Char> fmt,
basic_format_args<basic_printf_context<type_identity_t<Char>>> args)
-> std::basic_string<Char> {
auto buf = basic_memory_buffer<Char>();
detail::vprintf(buf, fmt, args);
return to_string(buf);
}
/**
\rst
Formats arguments and returns the result as a string.
**Example**::
std::string message = fmt::sprintf("The answer is %d", 42);
\endrst
*/
template <typename S, typename... T,
typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>>
inline auto sprintf(const S& fmt, const T&... args) -> std::basic_string<Char> {
return vsprintf(detail::to_string_view(fmt),
fmt::make_format_args<basic_printf_context<Char>>(args...));
}
template <typename Char>
inline auto vfprintf(
std::FILE* f, basic_string_view<Char> fmt,
basic_format_args<basic_printf_context<type_identity_t<Char>>> args)
-> int {
auto buf = basic_memory_buffer<Char>();
detail::vprintf(buf, fmt, args);
size_t size = buf.size();
return std::fwrite(buf.data(), sizeof(Char), size, f) < size
? -1
: static_cast<int>(size);
}
/**
\rst
Prints formatted data to the file *f*.
**Example**::
fmt::fprintf(stderr, "Don't %s!", "panic");
\endrst
*/
template <typename S, typename... T, typename Char = char_t<S>>
inline auto fprintf(std::FILE* f, const S& fmt, const T&... args) -> int {
return vfprintf(f, detail::to_string_view(fmt),
fmt::make_format_args<basic_printf_context<Char>>(args...));
}
template <typename Char>
FMT_DEPRECATED inline auto vprintf(
basic_string_view<Char> fmt,
basic_format_args<basic_printf_context<type_identity_t<Char>>> args)
-> int {
return vfprintf(stdout, fmt, args);
}
/**
\rst
Prints formatted data to ``stdout``.
**Example**::
fmt::printf("Elapsed time: %.2f seconds", 1.23);
\endrst
*/
template <typename... T>
inline auto printf(string_view fmt, const T&... args) -> int {
return vfprintf(stdout, fmt, make_printf_args(args...));
}
template <typename... T>
FMT_DEPRECATED inline auto printf(basic_string_view<wchar_t> fmt,
const T&... args) -> int {
return vfprintf(stdout, fmt, make_wprintf_args(args...));
}
FMT_END_EXPORT
FMT_END_NAMESPACE
#endif // FMT_PRINTF_H_

732
include/fmt/ranges.h Normal file
View file

@ -0,0 +1,732 @@
// Formatting library for C++ - experimental range support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
//
// Copyright (c) 2018 - present, Remotion (Igor Schulz)
// All Rights Reserved
// {fmt} support for ranges, containers and types tuple interface.
#ifndef FMT_RANGES_H_
#define FMT_RANGES_H_
#include <initializer_list>
#include <tuple>
#include <type_traits>
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Range, typename OutputIt>
auto copy(const Range& range, OutputIt out) -> OutputIt {
for (auto it = range.begin(), end = range.end(); it != end; ++it)
*out++ = *it;
return out;
}
template <typename OutputIt>
auto copy(const char* str, OutputIt out) -> OutputIt {
while (*str) *out++ = *str++;
return out;
}
template <typename OutputIt> auto copy(char ch, OutputIt out) -> OutputIt {
*out++ = ch;
return out;
}
template <typename OutputIt> auto copy(wchar_t ch, OutputIt out) -> OutputIt {
*out++ = ch;
return out;
}
// Returns true if T has a std::string-like interface, like std::string_view.
template <typename T> class is_std_string_like {
template <typename U>
static auto check(U* p)
-> decltype((void)p->find('a'), p->length(), (void)p->data(), int());
template <typename> static void check(...);
public:
static constexpr const bool value =
is_string<T>::value ||
std::is_convertible<T, std_string_view<char>>::value ||
!std::is_void<decltype(check<T>(nullptr))>::value;
};
template <typename Char>
struct is_std_string_like<fmt::basic_string_view<Char>> : std::true_type {};
template <typename T> class is_map {
template <typename U> static auto check(U*) -> typename U::mapped_type;
template <typename> static void check(...);
public:
#ifdef FMT_FORMAT_MAP_AS_LIST // DEPRECATED!
static constexpr const bool value = false;
#else
static constexpr const bool value =
!std::is_void<decltype(check<T>(nullptr))>::value;
#endif
};
template <typename T> class is_set {
template <typename U> static auto check(U*) -> typename U::key_type;
template <typename> static void check(...);
public:
#ifdef FMT_FORMAT_SET_AS_LIST // DEPRECATED!
static constexpr const bool value = false;
#else
static constexpr const bool value =
!std::is_void<decltype(check<T>(nullptr))>::value && !is_map<T>::value;
#endif
};
template <typename... Ts> struct conditional_helper {};
template <typename T, typename _ = void> struct is_range_ : std::false_type {};
#if !FMT_MSC_VERSION || FMT_MSC_VERSION > 1800
# define FMT_DECLTYPE_RETURN(val) \
->decltype(val) { return val; } \
static_assert( \
true, "") // This makes it so that a semicolon is required after the
// macro, which helps clang-format handle the formatting.
// C array overload
template <typename T, std::size_t N>
auto range_begin(const T (&arr)[N]) -> const T* {
return arr;
}
template <typename T, std::size_t N>
auto range_end(const T (&arr)[N]) -> const T* {
return arr + N;
}
template <typename T, typename Enable = void>
struct has_member_fn_begin_end_t : std::false_type {};
template <typename T>
struct has_member_fn_begin_end_t<T, void_t<decltype(std::declval<T>().begin()),
decltype(std::declval<T>().end())>>
: std::true_type {};
// Member function overload
template <typename T>
auto range_begin(T&& rng) FMT_DECLTYPE_RETURN(static_cast<T&&>(rng).begin());
template <typename T>
auto range_end(T&& rng) FMT_DECLTYPE_RETURN(static_cast<T&&>(rng).end());
// ADL overload. Only participates in overload resolution if member functions
// are not found.
template <typename T>
auto range_begin(T&& rng)
-> enable_if_t<!has_member_fn_begin_end_t<T&&>::value,
decltype(begin(static_cast<T&&>(rng)))> {
return begin(static_cast<T&&>(rng));
}
template <typename T>
auto range_end(T&& rng) -> enable_if_t<!has_member_fn_begin_end_t<T&&>::value,
decltype(end(static_cast<T&&>(rng)))> {
return end(static_cast<T&&>(rng));
}
template <typename T, typename Enable = void>
struct has_const_begin_end : std::false_type {};
template <typename T, typename Enable = void>
struct has_mutable_begin_end : std::false_type {};
template <typename T>
struct has_const_begin_end<
T,
void_t<
decltype(detail::range_begin(std::declval<const remove_cvref_t<T>&>())),
decltype(detail::range_end(std::declval<const remove_cvref_t<T>&>()))>>
: std::true_type {};
template <typename T>
struct has_mutable_begin_end<
T, void_t<decltype(detail::range_begin(std::declval<T>())),
decltype(detail::range_end(std::declval<T>())),
// the extra int here is because older versions of MSVC don't
// SFINAE properly unless there are distinct types
int>> : std::true_type {};
template <typename T>
struct is_range_<T, void>
: std::integral_constant<bool, (has_const_begin_end<T>::value ||
has_mutable_begin_end<T>::value)> {};
# undef FMT_DECLTYPE_RETURN
#endif
// tuple_size and tuple_element check.
template <typename T> class is_tuple_like_ {
template <typename U>
static auto check(U* p) -> decltype(std::tuple_size<U>::value, int());
template <typename> static void check(...);
public:
static constexpr const bool value =
!std::is_void<decltype(check<T>(nullptr))>::value;
};
// Check for integer_sequence
#if defined(__cpp_lib_integer_sequence) || FMT_MSC_VERSION >= 1900
template <typename T, T... N>
using integer_sequence = std::integer_sequence<T, N...>;
template <size_t... N> using index_sequence = std::index_sequence<N...>;
template <size_t N> using make_index_sequence = std::make_index_sequence<N>;
#else
template <typename T, T... N> struct integer_sequence {
using value_type = T;
static FMT_CONSTEXPR size_t size() { return sizeof...(N); }
};
template <size_t... N> using index_sequence = integer_sequence<size_t, N...>;
template <typename T, size_t N, T... Ns>
struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...> {};
template <typename T, T... Ns>
struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...> {};
template <size_t N>
using make_index_sequence = make_integer_sequence<size_t, N>;
#endif
template <typename T>
using tuple_index_sequence = make_index_sequence<std::tuple_size<T>::value>;
template <typename T, typename C, bool = is_tuple_like_<T>::value>
class is_tuple_formattable_ {
public:
static constexpr const bool value = false;
};
template <typename T, typename C> class is_tuple_formattable_<T, C, true> {
template <std::size_t... Is>
static std::true_type check2(index_sequence<Is...>,
integer_sequence<bool, (Is == Is)...>);
static std::false_type check2(...);
template <std::size_t... Is>
static decltype(check2(
index_sequence<Is...>{},
integer_sequence<
bool, (is_formattable<typename std::tuple_element<Is, T>::type,
C>::value)...>{})) check(index_sequence<Is...>);
public:
static constexpr const bool value =
decltype(check(tuple_index_sequence<T>{}))::value;
};
template <typename Tuple, typename F, size_t... Is>
FMT_CONSTEXPR void for_each(index_sequence<Is...>, Tuple&& t, F&& f) {
using std::get;
// Using a free function get<Is>(Tuple) now.
const int unused[] = {0, ((void)f(get<Is>(t)), 0)...};
ignore_unused(unused);
}
template <typename Tuple, typename F>
FMT_CONSTEXPR void for_each(Tuple&& t, F&& f) {
for_each(tuple_index_sequence<remove_cvref_t<Tuple>>(),
std::forward<Tuple>(t), std::forward<F>(f));
}
template <typename Tuple1, typename Tuple2, typename F, size_t... Is>
void for_each2(index_sequence<Is...>, Tuple1&& t1, Tuple2&& t2, F&& f) {
using std::get;
const int unused[] = {0, ((void)f(get<Is>(t1), get<Is>(t2)), 0)...};
ignore_unused(unused);
}
template <typename Tuple1, typename Tuple2, typename F>
void for_each2(Tuple1&& t1, Tuple2&& t2, F&& f) {
for_each2(tuple_index_sequence<remove_cvref_t<Tuple1>>(),
std::forward<Tuple1>(t1), std::forward<Tuple2>(t2),
std::forward<F>(f));
}
namespace tuple {
// Workaround a bug in MSVC 2019 (v140).
template <typename Char, typename... T>
using result_t = std::tuple<formatter<remove_cvref_t<T>, Char>...>;
using std::get;
template <typename Tuple, typename Char, std::size_t... Is>
auto get_formatters(index_sequence<Is...>)
-> result_t<Char, decltype(get<Is>(std::declval<Tuple>()))...>;
} // namespace tuple
#if FMT_MSC_VERSION && FMT_MSC_VERSION < 1920
// Older MSVC doesn't get the reference type correctly for arrays.
template <typename R> struct range_reference_type_impl {
using type = decltype(*detail::range_begin(std::declval<R&>()));
};
template <typename T, std::size_t N> struct range_reference_type_impl<T[N]> {
using type = T&;
};
template <typename T>
using range_reference_type = typename range_reference_type_impl<T>::type;
#else
template <typename Range>
using range_reference_type =
decltype(*detail::range_begin(std::declval<Range&>()));
#endif
// We don't use the Range's value_type for anything, but we do need the Range's
// reference type, with cv-ref stripped.
template <typename Range>
using uncvref_type = remove_cvref_t<range_reference_type<Range>>;
template <typename Formatter>
FMT_CONSTEXPR auto maybe_set_debug_format(Formatter& f, bool set)
-> decltype(f.set_debug_format(set)) {
f.set_debug_format(set);
}
template <typename Formatter>
FMT_CONSTEXPR void maybe_set_debug_format(Formatter&, ...) {}
// These are not generic lambdas for compatibility with C++11.
template <typename ParseContext> struct parse_empty_specs {
template <typename Formatter> FMT_CONSTEXPR void operator()(Formatter& f) {
f.parse(ctx);
detail::maybe_set_debug_format(f, true);
}
ParseContext& ctx;
};
template <typename FormatContext> struct format_tuple_element {
using char_type = typename FormatContext::char_type;
template <typename T>
void operator()(const formatter<T, char_type>& f, const T& v) {
if (i > 0)
ctx.advance_to(detail::copy_str<char_type>(separator, ctx.out()));
ctx.advance_to(f.format(v, ctx));
++i;
}
int i;
FormatContext& ctx;
basic_string_view<char_type> separator;
};
} // namespace detail
template <typename T> struct is_tuple_like {
static constexpr const bool value =
detail::is_tuple_like_<T>::value && !detail::is_range_<T>::value;
};
template <typename T, typename C> struct is_tuple_formattable {
static constexpr const bool value =
detail::is_tuple_formattable_<T, C>::value;
};
template <typename Tuple, typename Char>
struct formatter<Tuple, Char,
enable_if_t<fmt::is_tuple_like<Tuple>::value &&
fmt::is_tuple_formattable<Tuple, Char>::value>> {
private:
decltype(detail::tuple::get_formatters<Tuple, Char>(
detail::tuple_index_sequence<Tuple>())) formatters_;
basic_string_view<Char> separator_ = detail::string_literal<Char, ',', ' '>{};
basic_string_view<Char> opening_bracket_ =
detail::string_literal<Char, '('>{};
basic_string_view<Char> closing_bracket_ =
detail::string_literal<Char, ')'>{};
public:
FMT_CONSTEXPR formatter() {}
FMT_CONSTEXPR void set_separator(basic_string_view<Char> sep) {
separator_ = sep;
}
FMT_CONSTEXPR void set_brackets(basic_string_view<Char> open,
basic_string_view<Char> close) {
opening_bracket_ = open;
closing_bracket_ = close;
}
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
auto it = ctx.begin();
if (it != ctx.end() && *it != '}')
FMT_THROW(format_error("invalid format specifier"));
detail::for_each(formatters_, detail::parse_empty_specs<ParseContext>{ctx});
return it;
}
template <typename FormatContext>
auto format(const Tuple& value, FormatContext& ctx) const
-> decltype(ctx.out()) {
ctx.advance_to(detail::copy_str<Char>(opening_bracket_, ctx.out()));
detail::for_each2(
formatters_, value,
detail::format_tuple_element<FormatContext>{0, ctx, separator_});
return detail::copy_str<Char>(closing_bracket_, ctx.out());
}
};
template <typename T, typename Char> struct is_range {
static constexpr const bool value =
detail::is_range_<T>::value && !detail::is_std_string_like<T>::value &&
!std::is_convertible<T, std::basic_string<Char>>::value &&
!std::is_convertible<T, detail::std_string_view<Char>>::value;
};
namespace detail {
template <typename Context> struct range_mapper {
using mapper = arg_mapper<Context>;
template <typename T,
FMT_ENABLE_IF(has_formatter<remove_cvref_t<T>, Context>::value)>
static auto map(T&& value) -> T&& {
return static_cast<T&&>(value);
}
template <typename T,
FMT_ENABLE_IF(!has_formatter<remove_cvref_t<T>, Context>::value)>
static auto map(T&& value)
-> decltype(mapper().map(static_cast<T&&>(value))) {
return mapper().map(static_cast<T&&>(value));
}
};
template <typename Char, typename Element>
using range_formatter_type =
formatter<remove_cvref_t<decltype(range_mapper<buffer_context<Char>>{}.map(
std::declval<Element>()))>,
Char>;
template <typename R>
using maybe_const_range =
conditional_t<has_const_begin_end<R>::value, const R, R>;
// Workaround a bug in MSVC 2015 and earlier.
#if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1910
template <typename R, typename Char>
struct is_formattable_delayed
: is_formattable<uncvref_type<maybe_const_range<R>>, Char> {};
#endif
} // namespace detail
template <typename T, typename Char, typename Enable = void>
struct range_formatter;
template <typename T, typename Char>
struct range_formatter<
T, Char,
enable_if_t<conjunction<std::is_same<T, remove_cvref_t<T>>,
is_formattable<T, Char>>::value>> {
private:
detail::range_formatter_type<Char, T> underlying_;
basic_string_view<Char> separator_ = detail::string_literal<Char, ',', ' '>{};
basic_string_view<Char> opening_bracket_ =
detail::string_literal<Char, '['>{};
basic_string_view<Char> closing_bracket_ =
detail::string_literal<Char, ']'>{};
public:
FMT_CONSTEXPR range_formatter() {}
FMT_CONSTEXPR auto underlying() -> detail::range_formatter_type<Char, T>& {
return underlying_;
}
FMT_CONSTEXPR void set_separator(basic_string_view<Char> sep) {
separator_ = sep;
}
FMT_CONSTEXPR void set_brackets(basic_string_view<Char> open,
basic_string_view<Char> close) {
opening_bracket_ = open;
closing_bracket_ = close;
}
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
auto it = ctx.begin();
auto end = ctx.end();
if (it != end && *it == 'n') {
set_brackets({}, {});
++it;
}
if (it != end && *it != '}') {
if (*it != ':') FMT_THROW(format_error("invalid format specifier"));
++it;
} else {
detail::maybe_set_debug_format(underlying_, true);
}
ctx.advance_to(it);
return underlying_.parse(ctx);
}
template <typename R, typename FormatContext>
auto format(R&& range, FormatContext& ctx) const -> decltype(ctx.out()) {
detail::range_mapper<buffer_context<Char>> mapper;
auto out = ctx.out();
out = detail::copy_str<Char>(opening_bracket_, out);
int i = 0;
auto it = detail::range_begin(range);
auto end = detail::range_end(range);
for (; it != end; ++it) {
if (i > 0) out = detail::copy_str<Char>(separator_, out);
ctx.advance_to(out);
out = underlying_.format(mapper.map(*it), ctx);
++i;
}
out = detail::copy_str<Char>(closing_bracket_, out);
return out;
}
};
enum class range_format { disabled, map, set, sequence, string, debug_string };
namespace detail {
template <typename T>
struct range_format_kind_
: std::integral_constant<range_format,
std::is_same<uncvref_type<T>, T>::value
? range_format::disabled
: is_map<T>::value ? range_format::map
: is_set<T>::value ? range_format::set
: range_format::sequence> {};
template <range_format K, typename R, typename Char, typename Enable = void>
struct range_default_formatter;
template <range_format K>
using range_format_constant = std::integral_constant<range_format, K>;
template <range_format K, typename R, typename Char>
struct range_default_formatter<
K, R, Char,
enable_if_t<(K == range_format::sequence || K == range_format::map ||
K == range_format::set)>> {
using range_type = detail::maybe_const_range<R>;
range_formatter<detail::uncvref_type<range_type>, Char> underlying_;
FMT_CONSTEXPR range_default_formatter() { init(range_format_constant<K>()); }
FMT_CONSTEXPR void init(range_format_constant<range_format::set>) {
underlying_.set_brackets(detail::string_literal<Char, '{'>{},
detail::string_literal<Char, '}'>{});
}
FMT_CONSTEXPR void init(range_format_constant<range_format::map>) {
underlying_.set_brackets(detail::string_literal<Char, '{'>{},
detail::string_literal<Char, '}'>{});
underlying_.underlying().set_brackets({}, {});
underlying_.underlying().set_separator(
detail::string_literal<Char, ':', ' '>{});
}
FMT_CONSTEXPR void init(range_format_constant<range_format::sequence>) {}
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return underlying_.parse(ctx);
}
template <typename FormatContext>
auto format(range_type& range, FormatContext& ctx) const
-> decltype(ctx.out()) {
return underlying_.format(range, ctx);
}
};
} // namespace detail
template <typename T, typename Char, typename Enable = void>
struct range_format_kind
: conditional_t<
is_range<T, Char>::value, detail::range_format_kind_<T>,
std::integral_constant<range_format, range_format::disabled>> {};
template <typename R, typename Char>
struct formatter<
R, Char,
enable_if_t<conjunction<bool_constant<range_format_kind<R, Char>::value !=
range_format::disabled>
// Workaround a bug in MSVC 2015 and earlier.
#if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1910
,
detail::is_formattable_delayed<R, Char>
#endif
>::value>>
: detail::range_default_formatter<range_format_kind<R, Char>::value, R,
Char> {
};
template <typename Char, typename... T> struct tuple_join_view : detail::view {
const std::tuple<T...>& tuple;
basic_string_view<Char> sep;
tuple_join_view(const std::tuple<T...>& t, basic_string_view<Char> s)
: tuple(t), sep{s} {}
};
// Define FMT_TUPLE_JOIN_SPECIFIERS to enable experimental format specifiers
// support in tuple_join. It is disabled by default because of issues with
// the dynamic width and precision.
#ifndef FMT_TUPLE_JOIN_SPECIFIERS
# define FMT_TUPLE_JOIN_SPECIFIERS 0
#endif
template <typename Char, typename... T>
struct formatter<tuple_join_view<Char, T...>, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return do_parse(ctx, std::integral_constant<size_t, sizeof...(T)>());
}
template <typename FormatContext>
auto format(const tuple_join_view<Char, T...>& value,
FormatContext& ctx) const -> typename FormatContext::iterator {
return do_format(value, ctx,
std::integral_constant<size_t, sizeof...(T)>());
}
private:
std::tuple<formatter<typename std::decay<T>::type, Char>...> formatters_;
template <typename ParseContext>
FMT_CONSTEXPR auto do_parse(ParseContext& ctx,
std::integral_constant<size_t, 0>)
-> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename ParseContext, size_t N>
FMT_CONSTEXPR auto do_parse(ParseContext& ctx,
std::integral_constant<size_t, N>)
-> decltype(ctx.begin()) {
auto end = ctx.begin();
#if FMT_TUPLE_JOIN_SPECIFIERS
end = std::get<sizeof...(T) - N>(formatters_).parse(ctx);
if (N > 1) {
auto end1 = do_parse(ctx, std::integral_constant<size_t, N - 1>());
if (end != end1)
FMT_THROW(format_error("incompatible format specs for tuple elements"));
}
#endif
return end;
}
template <typename FormatContext>
auto do_format(const tuple_join_view<Char, T...>&, FormatContext& ctx,
std::integral_constant<size_t, 0>) const ->
typename FormatContext::iterator {
return ctx.out();
}
template <typename FormatContext, size_t N>
auto do_format(const tuple_join_view<Char, T...>& value, FormatContext& ctx,
std::integral_constant<size_t, N>) const ->
typename FormatContext::iterator {
auto out = std::get<sizeof...(T) - N>(formatters_)
.format(std::get<sizeof...(T) - N>(value.tuple), ctx);
if (N > 1) {
out = std::copy(value.sep.begin(), value.sep.end(), out);
ctx.advance_to(out);
return do_format(value, ctx, std::integral_constant<size_t, N - 1>());
}
return out;
}
};
namespace detail {
// Check if T has an interface like a container adaptor (e.g. std::stack,
// std::queue, std::priority_queue).
template <typename T> class is_container_adaptor_like {
template <typename U> static auto check(U* p) -> typename U::container_type;
template <typename> static void check(...);
public:
static constexpr const bool value =
!std::is_void<decltype(check<T>(nullptr))>::value;
};
template <typename Container> struct all {
const Container& c;
auto begin() const -> typename Container::const_iterator { return c.begin(); }
auto end() const -> typename Container::const_iterator { return c.end(); }
};
} // namespace detail
template <typename T, typename Char>
struct formatter<T, Char,
enable_if_t<detail::is_container_adaptor_like<T>::value>>
: formatter<detail::all<typename T::container_type>, Char> {
using all = detail::all<typename T::container_type>;
template <typename FormatContext>
auto format(const T& t, FormatContext& ctx) const -> decltype(ctx.out()) {
struct getter : T {
static auto get(const T& t) -> all {
return {t.*(&getter::c)}; // Access c through the derived class.
}
};
return formatter<all>::format(getter::get(t), ctx);
}
};
FMT_BEGIN_EXPORT
/**
\rst
Returns an object that formats `tuple` with elements separated by `sep`.
**Example**::
std::tuple<int, char> t = {1, 'a'};
fmt::print("{}", fmt::join(t, ", "));
// Output: "1, a"
\endrst
*/
template <typename... T>
FMT_CONSTEXPR auto join(const std::tuple<T...>& tuple, string_view sep)
-> tuple_join_view<char, T...> {
return {tuple, sep};
}
template <typename... T>
FMT_CONSTEXPR auto join(const std::tuple<T...>& tuple,
basic_string_view<wchar_t> sep)
-> tuple_join_view<wchar_t, T...> {
return {tuple, sep};
}
/**
\rst
Returns an object that formats `initializer_list` with elements separated by
`sep`.
**Example**::
fmt::print("{}", fmt::join({1, 2, 3}, ", "));
// Output: "1, 2, 3"
\endrst
*/
template <typename T>
auto join(std::initializer_list<T> list, string_view sep)
-> join_view<const T*, const T*> {
return join(std::begin(list), std::end(list), sep);
}
FMT_END_EXPORT
FMT_END_NAMESPACE
#endif // FMT_RANGES_H_

349
include/fmt/std.h Normal file
View file

@ -0,0 +1,349 @@
// Formatting library for C++ - formatters for standard library types
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_STD_H_
#define FMT_STD_H_
#include <cstdlib>
#include <exception>
#include <memory>
#include <thread>
#include <type_traits>
#include <typeinfo>
#include <utility>
#include "ostream.h"
#if FMT_HAS_INCLUDE(<version>)
# include <version>
#endif
// Checking FMT_CPLUSPLUS for warning suppression in MSVC.
#if FMT_CPLUSPLUS >= 201703L
# if FMT_HAS_INCLUDE(<filesystem>)
# include <filesystem>
# endif
# if FMT_HAS_INCLUDE(<variant>)
# include <variant>
# endif
# if FMT_HAS_INCLUDE(<optional>)
# include <optional>
# endif
#endif
// GCC 4 does not support FMT_HAS_INCLUDE.
#if FMT_HAS_INCLUDE(<cxxabi.h>) || defined(__GLIBCXX__)
# include <cxxabi.h>
// Android NDK with gabi++ library on some architectures does not implement
// abi::__cxa_demangle().
# ifndef __GABIXX_CXXABI_H__
# define FMT_HAS_ABI_CXA_DEMANGLE
# endif
#endif
#ifdef __cpp_lib_filesystem
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Char>
void write_escaped_path(basic_memory_buffer<Char>& quoted,
const std::filesystem::path& p) {
write_escaped_string<Char>(std::back_inserter(quoted), p.string<Char>());
}
# ifdef _WIN32
template <>
inline void write_escaped_path<char>(memory_buffer& quoted,
const std::filesystem::path& p) {
auto buf = basic_memory_buffer<wchar_t>();
write_escaped_string<wchar_t>(std::back_inserter(buf), p.native());
// Convert UTF-16 to UTF-8.
if (!to_utf8<wchar_t>::convert(quoted, {buf.data(), buf.size()}))
FMT_THROW(std::runtime_error("invalid utf16"));
}
# endif
template <>
inline void write_escaped_path<std::filesystem::path::value_type>(
basic_memory_buffer<std::filesystem::path::value_type>& quoted,
const std::filesystem::path& p) {
write_escaped_string<std::filesystem::path::value_type>(
std::back_inserter(quoted), p.native());
}
} // namespace detail
FMT_EXPORT
template <typename Char>
struct formatter<std::filesystem::path, Char>
: formatter<basic_string_view<Char>> {
template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) {
auto out = formatter<basic_string_view<Char>>::parse(ctx);
this->set_debug_format(false);
return out;
}
template <typename FormatContext>
auto format(const std::filesystem::path& p, FormatContext& ctx) const ->
typename FormatContext::iterator {
auto quoted = basic_memory_buffer<Char>();
detail::write_escaped_path(quoted, p);
return formatter<basic_string_view<Char>>::format(
basic_string_view<Char>(quoted.data(), quoted.size()), ctx);
}
};
FMT_END_NAMESPACE
#endif
FMT_BEGIN_NAMESPACE
FMT_EXPORT
template <typename Char>
struct formatter<std::thread::id, Char> : basic_ostream_formatter<Char> {};
FMT_END_NAMESPACE
#ifdef __cpp_lib_optional
FMT_BEGIN_NAMESPACE
FMT_EXPORT
template <typename T, typename Char>
struct formatter<std::optional<T>, Char,
std::enable_if_t<is_formattable<T, Char>::value>> {
private:
formatter<T, Char> underlying_;
static constexpr basic_string_view<Char> optional =
detail::string_literal<Char, 'o', 'p', 't', 'i', 'o', 'n', 'a', 'l',
'('>{};
static constexpr basic_string_view<Char> none =
detail::string_literal<Char, 'n', 'o', 'n', 'e'>{};
template <class U>
FMT_CONSTEXPR static auto maybe_set_debug_format(U& u, bool set)
-> decltype(u.set_debug_format(set)) {
u.set_debug_format(set);
}
template <class U>
FMT_CONSTEXPR static void maybe_set_debug_format(U&, ...) {}
public:
template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) {
maybe_set_debug_format(underlying_, true);
return underlying_.parse(ctx);
}
template <typename FormatContext>
auto format(std::optional<T> const& opt, FormatContext& ctx) const
-> decltype(ctx.out()) {
if (!opt) return detail::write<Char>(ctx.out(), none);
auto out = ctx.out();
out = detail::write<Char>(out, optional);
ctx.advance_to(out);
out = underlying_.format(*opt, ctx);
return detail::write(out, ')');
}
};
FMT_END_NAMESPACE
#endif // __cpp_lib_optional
#ifdef __cpp_lib_variant
FMT_BEGIN_NAMESPACE
FMT_EXPORT
template <typename Char> struct formatter<std::monostate, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const std::monostate&, FormatContext& ctx) const
-> decltype(ctx.out()) {
auto out = ctx.out();
out = detail::write<Char>(out, "monostate");
return out;
}
};
namespace detail {
template <typename T>
using variant_index_sequence =
std::make_index_sequence<std::variant_size<T>::value>;
template <typename> struct is_variant_like_ : std::false_type {};
template <typename... Types>
struct is_variant_like_<std::variant<Types...>> : std::true_type {};
// formattable element check.
template <typename T, typename C> class is_variant_formattable_ {
template <std::size_t... Is>
static std::conjunction<
is_formattable<std::variant_alternative_t<Is, T>, C>...>
check(std::index_sequence<Is...>);
public:
static constexpr const bool value =
decltype(check(variant_index_sequence<T>{}))::value;
};
template <typename Char, typename OutputIt, typename T>
auto write_variant_alternative(OutputIt out, const T& v) -> OutputIt {
if constexpr (is_string<T>::value)
return write_escaped_string<Char>(out, detail::to_string_view(v));
else if constexpr (std::is_same_v<T, Char>)
return write_escaped_char(out, v);
else
return write<Char>(out, v);
}
} // namespace detail
template <typename T> struct is_variant_like {
static constexpr const bool value = detail::is_variant_like_<T>::value;
};
template <typename T, typename C> struct is_variant_formattable {
static constexpr const bool value =
detail::is_variant_formattable_<T, C>::value;
};
FMT_EXPORT
template <typename Variant, typename Char>
struct formatter<
Variant, Char,
std::enable_if_t<std::conjunction_v<
is_variant_like<Variant>, is_variant_formattable<Variant, Char>>>> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const Variant& value, FormatContext& ctx) const
-> decltype(ctx.out()) {
auto out = ctx.out();
out = detail::write<Char>(out, "variant(");
try {
std::visit(
[&](const auto& v) {
out = detail::write_variant_alternative<Char>(out, v);
},
value);
} catch (const std::bad_variant_access&) {
detail::write<Char>(out, "valueless by exception");
}
*out++ = ')';
return out;
}
};
FMT_END_NAMESPACE
#endif // __cpp_lib_variant
FMT_BEGIN_NAMESPACE
FMT_EXPORT
template <typename Char> struct formatter<std::error_code, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
FMT_CONSTEXPR auto format(const std::error_code& ec, FormatContext& ctx) const
-> decltype(ctx.out()) {
auto out = ctx.out();
out = detail::write_bytes(out, ec.category().name(), format_specs<Char>());
out = detail::write<Char>(out, Char(':'));
out = detail::write<Char>(out, ec.value());
return out;
}
};
FMT_EXPORT
template <typename T, typename Char>
struct formatter<
T, Char,
typename std::enable_if<std::is_base_of<std::exception, T>::value>::type> {
private:
bool with_typename_ = false;
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto it = ctx.begin();
auto end = ctx.end();
if (it == end || *it == '}') return it;
if (*it == 't') {
++it;
with_typename_ = true;
}
return it;
}
template <typename OutputIt>
auto format(const std::exception& ex,
basic_format_context<OutputIt, Char>& ctx) const -> OutputIt {
format_specs<Char> spec;
auto out = ctx.out();
if (!with_typename_)
return detail::write_bytes(out, string_view(ex.what()), spec);
const std::type_info& ti = typeid(ex);
#ifdef FMT_HAS_ABI_CXA_DEMANGLE
int status = 0;
std::size_t size = 0;
std::unique_ptr<char, decltype(&std::free)> demangled_name_ptr(
abi::__cxa_demangle(ti.name(), nullptr, &size, &status), &std::free);
string_view demangled_name_view;
if (demangled_name_ptr) {
demangled_name_view = demangled_name_ptr.get();
// Normalization of stdlib inline namespace names.
// libc++ inline namespaces.
// std::__1::* -> std::*
// std::__1::__fs::* -> std::*
// libstdc++ inline namespaces.
// std::__cxx11::* -> std::*
// std::filesystem::__cxx11::* -> std::filesystem::*
if (demangled_name_view.starts_with("std::")) {
char* begin = demangled_name_ptr.get();
char* to = begin + 5; // std::
for (char *from = to, *end = begin + demangled_name_view.size();
from < end;) {
// This is safe, because demangled_name is NUL-terminated.
if (from[0] == '_' && from[1] == '_') {
char* next = from + 1;
while (next < end && *next != ':') next++;
if (next[0] == ':' && next[1] == ':') {
from = next + 2;
continue;
}
}
*to++ = *from++;
}
demangled_name_view = {begin, detail::to_unsigned(to - begin)};
}
} else {
demangled_name_view = string_view(ti.name());
}
out = detail::write_bytes(out, demangled_name_view, spec);
#elif FMT_MSC_VERSION
string_view demangled_name_view(ti.name());
if (demangled_name_view.starts_with("class "))
demangled_name_view.remove_prefix(6);
else if (demangled_name_view.starts_with("struct "))
demangled_name_view.remove_prefix(7);
out = detail::write_bytes(out, demangled_name_view, spec);
#else
out = detail::write_bytes(out, string_view(ti.name()), spec);
#endif
out = detail::write<Char>(out, Char(':'));
out = detail::write<Char>(out, Char(' '));
out = detail::write_bytes(out, string_view(ex.what()), spec);
return out;
}
};
FMT_END_NAMESPACE
#endif // FMT_STD_H_

258
include/fmt/xchar.h Normal file
View file

@ -0,0 +1,258 @@
// Formatting library for C++ - optional wchar_t and exotic character support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_XCHAR_H_
#define FMT_XCHAR_H_
#include <cwchar>
#include "format.h"
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
# include <locale>
#endif
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename T>
using is_exotic_char = bool_constant<!std::is_same<T, char>::value>;
inline auto write_loc(std::back_insert_iterator<detail::buffer<wchar_t>> out,
loc_value value, const format_specs<wchar_t>& specs,
locale_ref loc) -> bool {
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
auto& numpunct =
std::use_facet<std::numpunct<wchar_t>>(loc.get<std::locale>());
auto separator = std::wstring();
auto grouping = numpunct.grouping();
if (!grouping.empty()) separator = std::wstring(1, numpunct.thousands_sep());
return value.visit(loc_writer<wchar_t>{out, specs, separator, grouping, {}});
#endif
return false;
}
} // namespace detail
FMT_BEGIN_EXPORT
using wstring_view = basic_string_view<wchar_t>;
using wformat_parse_context = basic_format_parse_context<wchar_t>;
using wformat_context = buffer_context<wchar_t>;
using wformat_args = basic_format_args<wformat_context>;
using wmemory_buffer = basic_memory_buffer<wchar_t>;
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
// Workaround broken conversion on older gcc.
template <typename... Args> using wformat_string = wstring_view;
inline auto runtime(wstring_view s) -> wstring_view { return s; }
#else
template <typename... Args>
using wformat_string = basic_format_string<wchar_t, type_identity_t<Args>...>;
inline auto runtime(wstring_view s) -> runtime_format_string<wchar_t> {
return {{s}};
}
#endif
template <> struct is_char<wchar_t> : std::true_type {};
template <> struct is_char<detail::char8_type> : std::true_type {};
template <> struct is_char<char16_t> : std::true_type {};
template <> struct is_char<char32_t> : std::true_type {};
template <typename... T>
constexpr format_arg_store<wformat_context, T...> make_wformat_args(
const T&... args) {
return {args...};
}
inline namespace literals {
#if FMT_USE_USER_DEFINED_LITERALS && !FMT_USE_NONTYPE_TEMPLATE_ARGS
constexpr detail::udl_arg<wchar_t> operator"" _a(const wchar_t* s, size_t) {
return {s};
}
#endif
} // namespace literals
template <typename It, typename Sentinel>
auto join(It begin, Sentinel end, wstring_view sep)
-> join_view<It, Sentinel, wchar_t> {
return {begin, end, sep};
}
template <typename Range>
auto join(Range&& range, wstring_view sep)
-> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>,
wchar_t> {
return join(std::begin(range), std::end(range), sep);
}
template <typename T>
auto join(std::initializer_list<T> list, wstring_view sep)
-> join_view<const T*, const T*, wchar_t> {
return join(std::begin(list), std::end(list), sep);
}
template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
auto vformat(basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args)
-> std::basic_string<Char> {
auto buf = basic_memory_buffer<Char>();
detail::vformat_to(buf, format_str, args);
return to_string(buf);
}
template <typename... T>
auto format(wformat_string<T...> fmt, T&&... args) -> std::wstring {
return vformat(fmt::wstring_view(fmt), fmt::make_wformat_args(args...));
}
// Pass char_t as a default template parameter instead of using
// std::basic_string<char_t<S>> to reduce the symbol size.
template <typename S, typename... T, typename Char = char_t<S>,
FMT_ENABLE_IF(!std::is_same<Char, char>::value &&
!std::is_same<Char, wchar_t>::value)>
auto format(const S& format_str, T&&... args) -> std::basic_string<Char> {
return vformat(detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<Char>>(args...));
}
template <typename Locale, typename S, typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_locale<Locale>::value&&
detail::is_exotic_char<Char>::value)>
inline auto vformat(
const Locale& loc, const S& format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args)
-> std::basic_string<Char> {
return detail::vformat(loc, detail::to_string_view(format_str), args);
}
template <typename Locale, typename S, typename... T, typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_locale<Locale>::value&&
detail::is_exotic_char<Char>::value)>
inline auto format(const Locale& loc, const S& format_str, T&&... args)
-> std::basic_string<Char> {
return detail::vformat(loc, detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<Char>>(args...));
}
template <typename OutputIt, typename S, typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_exotic_char<Char>::value)>
auto vformat_to(OutputIt out, const S& format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args)
-> OutputIt {
auto&& buf = detail::get_buffer<Char>(out);
detail::vformat_to(buf, detail::to_string_view(format_str), args);
return detail::get_iterator(buf, out);
}
template <typename OutputIt, typename S, typename... T,
typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_exotic_char<Char>::value)>
inline auto format_to(OutputIt out, const S& fmt, T&&... args) -> OutputIt {
return vformat_to(out, detail::to_string_view(fmt),
fmt::make_format_args<buffer_context<Char>>(args...));
}
template <typename Locale, typename S, typename OutputIt, typename... Args,
typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_locale<Locale>::value&&
detail::is_exotic_char<Char>::value)>
inline auto vformat_to(
OutputIt out, const Locale& loc, const S& format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) -> OutputIt {
auto&& buf = detail::get_buffer<Char>(out);
vformat_to(buf, detail::to_string_view(format_str), args,
detail::locale_ref(loc));
return detail::get_iterator(buf, out);
}
template <
typename OutputIt, typename Locale, typename S, typename... T,
typename Char = char_t<S>,
bool enable = detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_locale<Locale>::value&& detail::is_exotic_char<Char>::value>
inline auto format_to(OutputIt out, const Locale& loc, const S& format_str,
T&&... args) ->
typename std::enable_if<enable, OutputIt>::type {
return vformat_to(out, loc, detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<Char>>(args...));
}
template <typename OutputIt, typename Char, typename... Args,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_exotic_char<Char>::value)>
inline auto vformat_to_n(
OutputIt out, size_t n, basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args)
-> format_to_n_result<OutputIt> {
using traits = detail::fixed_buffer_traits;
auto buf = detail::iterator_buffer<OutputIt, Char, traits>(out, n);
detail::vformat_to(buf, format_str, args);
return {buf.out(), buf.count()};
}
template <typename OutputIt, typename S, typename... T,
typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_exotic_char<Char>::value)>
inline auto format_to_n(OutputIt out, size_t n, const S& fmt, T&&... args)
-> format_to_n_result<OutputIt> {
return vformat_to_n(out, n, detail::to_string_view(fmt),
fmt::make_format_args<buffer_context<Char>>(args...));
}
template <typename S, typename... T, typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_exotic_char<Char>::value)>
inline auto formatted_size(const S& fmt, T&&... args) -> size_t {
auto buf = detail::counting_buffer<Char>();
detail::vformat_to(buf, detail::to_string_view(fmt),
fmt::make_format_args<buffer_context<Char>>(args...));
return buf.count();
}
inline void vprint(std::FILE* f, wstring_view fmt, wformat_args args) {
auto buf = wmemory_buffer();
detail::vformat_to(buf, fmt, args);
buf.push_back(L'\0');
if (std::fputws(buf.data(), f) == -1)
FMT_THROW(system_error(errno, FMT_STRING("cannot write to file")));
}
inline void vprint(wstring_view fmt, wformat_args args) {
vprint(stdout, fmt, args);
}
template <typename... T>
void print(std::FILE* f, wformat_string<T...> fmt, T&&... args) {
return vprint(f, wstring_view(fmt), fmt::make_wformat_args(args...));
}
template <typename... T> void print(wformat_string<T...> fmt, T&&... args) {
return vprint(wstring_view(fmt), fmt::make_wformat_args(args...));
}
template <typename... T>
void println(std::FILE* f, wformat_string<T...> fmt, T&&... args) {
return print(f, L"{}\n", fmt::format(fmt, std::forward<T>(args)...));
}
template <typename... T> void println(wformat_string<T...> fmt, T&&... args) {
return print(L"{}\n", fmt::format(fmt, std::forward<T>(args)...));
}
/**
Converts *value* to ``std::wstring`` using the default format for type *T*.
*/
template <typename T> inline auto to_wstring(const T& value) -> std::wstring {
return format(FMT_STRING(L"{}"), value);
}
FMT_END_EXPORT
FMT_END_NAMESPACE
#endif // FMT_XCHAR_H_

@ -1 +0,0 @@
Subproject commit a54cb108d4634e768ad3ce0855313991ccc768de

View file

@ -43,18 +43,16 @@ tab-size = 4
#include <semaphore>
#endif
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include <btop_config.hpp>
#include <btop_input.hpp>
#include <btop_theme.hpp>
#include <btop_draw.hpp>
#include <btop_menu.hpp>
#include "btop_shared.hpp"
#include "btop_tools.hpp"
#include "btop_config.hpp"
#include "btop_input.hpp"
#include "btop_theme.hpp"
#include "btop_draw.hpp"
#include "btop_menu.hpp"
using std::atomic;
using std::cout;
using std::endl;
using std::endl;
using std::flush;
using std::min;
using std::string;
@ -63,7 +61,6 @@ using std::to_string;
using std::vector;
namespace fs = std::filesystem;
namespace rng = std::ranges;
using namespace Tools;
using namespace std::chrono_literals;

View file

@ -22,9 +22,9 @@ tab-size = 4
#include <fstream>
#include <string_view>
#include <btop_config.hpp>
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include "btop_config.hpp"
#include "btop_shared.hpp"
#include "btop_tools.hpp"
using std::array;
using std::atomic;

View file

@ -21,13 +21,13 @@ tab-size = 4
#include <cmath>
#include <ranges>
#include <btop_draw.hpp>
#include <btop_config.hpp>
#include <btop_theme.hpp>
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include <btop_input.hpp>
#include <btop_menu.hpp>
#include "btop_draw.hpp"
#include "btop_config.hpp"
#include "btop_theme.hpp"
#include "btop_shared.hpp"
#include "btop_tools.hpp"
#include "btop_input.hpp"
#include "btop_menu.hpp"
using std::array;
using std::clamp;

View file

@ -21,17 +21,17 @@ tab-size = 4
#include <vector>
#include <thread>
#include <mutex>
#include <btop_input.hpp>
#include <btop_tools.hpp>
#include <btop_config.hpp>
#include <btop_shared.hpp>
#include <btop_menu.hpp>
#include <btop_draw.hpp>
#include <signal.h>
#include "btop_input.hpp"
#include "btop_tools.hpp"
#include "btop_config.hpp"
#include "btop_shared.hpp"
#include "btop_menu.hpp"
#include "btop_draw.hpp"
using std::cin;
using std::vector;
using namespace Tools;
using namespace std::literals; // for operator""s

View file

@ -19,24 +19,21 @@ tab-size = 4
#include <deque>
#include <robin_hood.h>
#include <array>
#include <ranges>
#include <signal.h>
#include <errno.h>
#include <cmath>
#include <filesystem>
#include <btop_menu.hpp>
#include <btop_tools.hpp>
#include <btop_config.hpp>
#include <btop_theme.hpp>
#include <btop_draw.hpp>
#include <btop_shared.hpp>
#include "btop_menu.hpp"
#include "btop_tools.hpp"
#include "btop_config.hpp"
#include "btop_theme.hpp"
#include "btop_draw.hpp"
#include "btop_shared.hpp"
using robin_hood::unordered_flat_map;
using std::array;
using std::ceil;
using std::clamp;
using std::deque;
using std::max;
using std::min;
using std::ref;
@ -45,7 +42,6 @@ using std::views::iota;
using namespace Tools;
namespace fs = std::filesystem;
namespace rng = std::ranges;
namespace Menu {

View file

@ -23,7 +23,7 @@ tab-size = 4
#include <vector>
#include <bitset>
#include <btop_input.hpp>
#include "btop_input.hpp"
using std::atomic;
using std::bitset;

View file

@ -18,8 +18,8 @@ tab-size = 4
#include <ranges>
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include "btop_shared.hpp"
#include "btop_tools.hpp"
namespace rng = std::ranges;
using namespace Tools;

View file

@ -17,19 +17,13 @@ tab-size = 4
*/
#include <cmath>
#include <ranges>
#include <fstream>
#include <unistd.h>
#include <btop_tools.hpp>
#include <btop_config.hpp>
#include <btop_theme.hpp>
#include "btop_tools.hpp"
#include "btop_config.hpp"
#include "btop_theme.hpp"
using std::ceil;
using std::clamp;
using std::max;
using std::min;
using std::quoted;
using std::round;
using std::stoi;
using std::to_string;
@ -38,7 +32,6 @@ using std::views::iota;
using namespace Tools;
namespace rng = std::ranges;
namespace fs = std::filesystem;
string Term::fg, Term::bg;

View file

@ -32,9 +32,9 @@ tab-size = 4
#include "robin_hood.h"
#include "widechar_width.hpp"
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include <btop_config.hpp>
#include "btop_shared.hpp"
#include "btop_tools.hpp"
#include "btop_config.hpp"
using std::cin;
using std::cout;
@ -437,10 +437,10 @@ namespace Tools {
if (shorten) {
auto f_pos = out.find('.');
if (f_pos == 1 and out.size() > 3) {
out = to_string(round(stof(out) * 10) / 10).substr(0,3);
out = to_string(round(stod(out) * 10) / 10).substr(0,3);
}
else if (f_pos != string::npos) {
out = to_string((int)round(stof(out)));
out = to_string((int)round(stod(out)));
}
if (out.size() > 3) {
out = to_string((int)(out[0] - '0') + 1);
@ -489,7 +489,7 @@ namespace Tools {
}
atomic_lock::atomic_lock(atomic<bool>& atom, bool wait) : atom(atom) {
if (wait) while (not this->atom.compare_exchange_strong(this->not_true, true));
if (wait) while (not this->atom.compare_exchange_strong(this->not_true, true));
else this->atom.store(true);
}

View file

@ -39,10 +39,10 @@ tab-size = 4
#endif
#endif
#define FMT_HEADER_ONLY
#include <fmt/core.h>
#include <fmt/format.h>
#include <fmt/ostream.h>
#include <fmt/ranges.h>
#include "fmt/core.h"
#include "fmt/format.h"
#include "fmt/ostream.h"
#include "fmt/ranges.h"
using std::array;
using std::atomic;
@ -50,7 +50,6 @@ using std::string;
using std::to_string;
using std::tuple;
using std::vector;
using namespace fmt;
using namespace fmt::literals;
//? ------------------------------------------------- NAMESPACES ------------------------------------------------------

View file

@ -59,9 +59,9 @@ tab-size = 4
#include <string>
#include <memory>
#include <btop_config.hpp>
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include "../btop_config.hpp"
#include "../btop_shared.hpp"
#include "../btop_tools.hpp"
using std::clamp, std::string_literals::operator""s, std::cmp_equal, std::cmp_less, std::cmp_greater;
using std::ifstream, std::numeric_limits, std::streamsize, std::round, std::max, std::min;

View file

@ -28,18 +28,17 @@ tab-size = 4
#include <ifaddrs.h>
#include <net/if.h>
#include <arpa/inet.h> // for inet_ntop()
#include <filesystem>
#if !(defined(STATIC_BUILD) && defined(__GLIBC__))
#include <pwd.h>
#endif
#include <btop_shared.hpp>
#include <btop_config.hpp>
#include <btop_tools.hpp>
#include "../btop_shared.hpp"
#include "../btop_config.hpp"
#include "../btop_tools.hpp"
using std::clamp;
using std::cmp_equal;
using std::cmp_greater;
using std::cmp_less;
using std::ifstream;
@ -48,6 +47,7 @@ using std::min;
using std::numeric_limits;
using std::round;
using std::streamsize;
using std::vector;
namespace fs = std::filesystem;
namespace rng = std::ranges;
@ -453,10 +453,10 @@ namespace Cpu {
}
catch (const std::exception& e) {
if (++failed < 5)
return ""s;
if (++failed < 5)
return ""s;
else {
Logger::warning("get_cpuHZ() : " + string{e.what()});
Logger::warning("get_cpuHZ() : " + string{e.what()});
return ""s;
}
}
@ -792,9 +792,9 @@ namespace Cpu {
}
catch (const std::exception& e) {
Logger::debug("Cpu::collect() : " + string{e.what()});
Logger::debug("Cpu::collect() : " + string{e.what()});
if (cread.bad()) throw std::runtime_error("Failed to read /proc/stat");
else throw std::runtime_error("Cpu::collect() : " + string{e.what()});
else throw std::runtime_error("Cpu::collect() : " + string{e.what()});
}
if (Config::getB("check_temp") and got_sensors)

View file

@ -45,9 +45,6 @@ tab-size = 4
#include <unistd.h>
#include <stdexcept>
#include <btop_config.hpp>
#include <btop_shared.hpp>
#include <btop_tools.hpp>
#include <cmath>
#include <fstream>
#include <numeric>
@ -55,6 +52,10 @@ tab-size = 4
#include <regex>
#include <string>
#include "../btop_config.hpp"
#include "../btop_shared.hpp"
#include "../btop_tools.hpp"
#include "sensors.hpp"
#include "smc.hpp"