/* * Greenshot - a free and open source screenshot tool * Copyright (C) 2007-2013 Thomas Braun, Jens Klingen, Robin Krom * * For more information see: http://getgreenshot.org/ * The Greenshot project is hosted on Sourceforge: http://sourceforge.net/projects/greenshot/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ using System; using System.Collections; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; namespace GreenshotPlugin.Core { internal class WuColorCube { /// /// Gets or sets the red minimum. /// /// The red minimum. public Int32 RedMinimum { get; set; } /// /// Gets or sets the red maximum. /// /// The red maximum. public Int32 RedMaximum { get; set; } /// /// Gets or sets the green minimum. /// /// The green minimum. public Int32 GreenMinimum { get; set; } /// /// Gets or sets the green maximum. /// /// The green maximum. public Int32 GreenMaximum { get; set; } /// /// Gets or sets the blue minimum. /// /// The blue minimum. public Int32 BlueMinimum { get; set; } /// /// Gets or sets the blue maximum. /// /// The blue maximum. public Int32 BlueMaximum { get; set; } /// /// Gets or sets the cube volume. /// /// The volume. public Int32 Volume { get; set; } } public class WuQuantizer : IDisposable { private const Int32 MAXCOLOR = 512; private const Int32 RED = 2; private const Int32 GREEN = 1; private const Int32 BLUE = 0; private const Int32 SIDESIZE = 33; private const Int32 MAXSIDEINDEX = 32; private const Int32 MAXVOLUME = SIDESIZE * SIDESIZE * SIDESIZE; // To count the colors private int colorCount = 0; private Int32[] reds; private Int32[] greens; private Int32[] blues; private Int32[] sums; private Int64[, ,] weights; private Int64[, ,] momentsRed; private Int64[, ,] momentsGreen; private Int64[, ,] momentsBlue; private Single[, ,] moments; private byte[] tag; private WuColorCube[] cubes; private Bitmap sourceBitmap; private Bitmap resultBitmap; public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } protected virtual void Dispose(bool disposing) { if (disposing) { if (resultBitmap != null) { resultBitmap.Dispose(); resultBitmap = null; } } } /// /// See for more details. /// public WuQuantizer(Bitmap sourceBitmap) { this.sourceBitmap = sourceBitmap; // Make sure the color count variables are reset BitArray bitArray = new BitArray((int)Math.Pow(2, 24)); colorCount = 0; // creates all the cubes cubes = new WuColorCube[MAXCOLOR]; // initializes all the cubes for (Int32 cubeIndex = 0; cubeIndex < MAXCOLOR; cubeIndex++) { cubes[cubeIndex] = new WuColorCube(); } // resets the reference minimums cubes[0].RedMinimum = 0; cubes[0].GreenMinimum = 0; cubes[0].BlueMinimum = 0; // resets the reference maximums cubes[0].RedMaximum = MAXSIDEINDEX; cubes[0].GreenMaximum = MAXSIDEINDEX; cubes[0].BlueMaximum = MAXSIDEINDEX; weights = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; momentsRed = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; momentsGreen = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; momentsBlue = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; moments = new Single[SIDESIZE, SIDESIZE, SIDESIZE]; Int32[] table = new Int32[256]; for (Int32 tableIndex = 0; tableIndex < 256; ++tableIndex) { table[tableIndex] = tableIndex * tableIndex; } // Use a bitmap to store the initial match, which is just as good as an array and saves us 2x the storage using (IFastBitmap sourceFastBitmap = FastBitmap.Create(sourceBitmap)) { IFastBitmapWithBlend sourceFastBitmapWithBlend = sourceFastBitmap as IFastBitmapWithBlend; sourceFastBitmap.Lock(); using (FastChunkyBitmap destinationFastBitmap = FastBitmap.CreateEmpty(sourceBitmap.Size, PixelFormat.Format8bppIndexed, Color.White) as FastChunkyBitmap) { destinationFastBitmap.Lock(); for (int y = 0; y < sourceFastBitmap.Height; y++) { for (int x = 0; x < sourceFastBitmap.Width; x++) { Color color; if (sourceFastBitmapWithBlend == null) { color = sourceFastBitmap.GetColorAt(x, y); } else { color = sourceFastBitmapWithBlend.GetBlendedColorAt(x, y); } // To count the colors int index = color.ToArgb() & 0x00ffffff; // Check if we already have this color if (!bitArray.Get(index)) { // If not, add 1 to the single colors colorCount++; bitArray.Set(index, true); } Int32 indexRed = (color.R >> 3) + 1; Int32 indexGreen = (color.G >> 3) + 1; Int32 indexBlue = (color.B >> 3) + 1; weights[indexRed, indexGreen, indexBlue]++; momentsRed[indexRed, indexGreen, indexBlue] += color.R; momentsGreen[indexRed, indexGreen, indexBlue] += color.G; momentsBlue[indexRed, indexGreen, indexBlue] += color.B; moments[indexRed, indexGreen, indexBlue] += table[color.R] + table[color.G] + table[color.B]; // Store the initial "match" Int32 paletteIndex = (indexRed << 10) + (indexRed << 6) + indexRed + (indexGreen << 5) + indexGreen + indexBlue; destinationFastBitmap.SetColorIndexAt(x, y, (byte)(paletteIndex & 0xff)); } } resultBitmap = destinationFastBitmap.UnlockAndReturnBitmap(); } } } /// /// See for more details. /// public Int32 GetColorCount() { return colorCount; } /// /// Reindex the 24/32 BPP (A)RGB image to a 8BPP /// /// Bitmap public Bitmap SimpleReindex() { List colors = new List(); Dictionary lookup = new Dictionary(); using (FastChunkyBitmap bbbDest = FastBitmap.Create(resultBitmap) as FastChunkyBitmap) { bbbDest.Lock(); using (IFastBitmap bbbSrc = FastBitmap.Create(sourceBitmap)) { IFastBitmapWithBlend bbbSrcBlend = bbbSrc as IFastBitmapWithBlend; bbbSrc.Lock(); byte index; for (int y = 0; y < bbbSrc.Height; y++) { for (int x = 0; x < bbbSrc.Width; x++) { Color color; if (bbbSrcBlend != null) { color = bbbSrcBlend.GetBlendedColorAt(x, y); } else { color = bbbSrc.GetColorAt(x, y); } if (lookup.ContainsKey(color)) { index = lookup[color]; } else { colors.Add(color); index = (byte)(colors.Count - 1); lookup.Add(color, index); } bbbDest.SetColorIndexAt(x, y, index); } } } } // generates palette ColorPalette imagePalette = resultBitmap.Palette; Color[] entries = imagePalette.Entries; for (Int32 paletteIndex = 0; paletteIndex < 256; paletteIndex++) { if (paletteIndex < colorCount) { entries[paletteIndex] = colors[paletteIndex]; } else { entries[paletteIndex] = Color.Black; } } resultBitmap.Palette = imagePalette; // Make sure the bitmap is not disposed, as we return it. Bitmap tmpBitmap = resultBitmap; resultBitmap = null; return tmpBitmap; } /// /// Get the image /// public Bitmap GetQuantizedImage(int allowedColorCount) { if (allowedColorCount > 256) { throw new ArgumentOutOfRangeException("Quantizing muss be done to get less than 256 colors"); } if (colorCount < allowedColorCount) { // Simple logic to reduce to 8 bit LOG.Info("Colors in the image are already less as whished for, using simple copy to indexed image, no quantizing needed!"); return SimpleReindex(); } // preprocess the colors CalculateMoments(); LOG.Info("Calculated the moments..."); Int32 next = 0; Single[] volumeVariance = new Single[MAXCOLOR]; // processes the cubes for (Int32 cubeIndex = 1; cubeIndex < allowedColorCount; ++cubeIndex) { // if cut is possible; make it if (Cut(cubes[next], cubes[cubeIndex])) { volumeVariance[next] = cubes[next].Volume > 1 ? CalculateVariance(cubes[next]) : 0.0f; volumeVariance[cubeIndex] = cubes[cubeIndex].Volume > 1 ? CalculateVariance(cubes[cubeIndex]) : 0.0f; } else { // the cut was not possible, revert the index volumeVariance[next] = 0.0f; cubeIndex--; } next = 0; Single temp = volumeVariance[0]; for (Int32 index = 1; index <= cubeIndex; ++index) { if (volumeVariance[index] > temp) { temp = volumeVariance[index]; next = index; } } if (temp <= 0.0) { allowedColorCount = cubeIndex + 1; break; } } Int32[] lookupRed = new Int32[MAXCOLOR]; Int32[] lookupGreen = new Int32[MAXCOLOR]; Int32[] lookupBlue = new Int32[MAXCOLOR]; tag = new byte[MAXVOLUME]; // precalculates lookup tables for (int k = 0; k < allowedColorCount; ++k) { Mark(cubes[k], k, tag); long weight = Volume(cubes[k], weights); if (weight > 0) { lookupRed[k] = (int)(Volume(cubes[k], momentsRed) / weight); lookupGreen[k] = (int)(Volume(cubes[k], momentsGreen) / weight); lookupBlue[k] = (int)(Volume(cubes[k], momentsBlue) / weight); } else { lookupRed[k] = 0; lookupGreen[k] = 0; lookupBlue[k] = 0; } } reds = new Int32[allowedColorCount + 1]; greens = new Int32[allowedColorCount + 1]; blues = new Int32[allowedColorCount + 1]; sums = new Int32[allowedColorCount + 1]; LOG.Info("Starting bitmap reconstruction..."); using (FastChunkyBitmap dest = FastBitmap.Create(resultBitmap) as FastChunkyBitmap) { using (IFastBitmap src = FastBitmap.Create(sourceBitmap)) { IFastBitmapWithBlend srcBlend = src as IFastBitmapWithBlend; Dictionary lookup = new Dictionary(); byte bestMatch; for (int y = 0; y < src.Height; y++) { for (int x = 0; x < src.Width; x++) { Color color; if (srcBlend != null) { // WithoutAlpha, this makes it possible to ignore the alpha color = srcBlend.GetBlendedColorAt(x, y); } else { color = src.GetColorAt(x, y); } // Check if we already matched the color if (!lookup.ContainsKey(color)) { // If not we need to find the best match // First get initial match bestMatch = dest.GetColorIndexAt(x, y); bestMatch = tag[bestMatch]; Int32 bestDistance = 100000000; for (int lookupIndex = 0; lookupIndex < allowedColorCount; lookupIndex++) { Int32 foundRed = lookupRed[lookupIndex]; Int32 foundGreen = lookupGreen[lookupIndex]; Int32 foundBlue = lookupBlue[lookupIndex]; Int32 deltaRed = color.R - foundRed; Int32 deltaGreen = color.G - foundGreen; Int32 deltaBlue = color.B - foundBlue; Int32 distance = deltaRed * deltaRed + deltaGreen * deltaGreen + deltaBlue * deltaBlue; if (distance < bestDistance) { bestDistance = distance; bestMatch = (byte)lookupIndex; } } lookup.Add(color, bestMatch); } else { // Already matched, so we just use the lookup bestMatch = lookup[color]; } reds[bestMatch] += color.R; greens[bestMatch] += color.G; blues[bestMatch] += color.B; sums[bestMatch]++; dest.SetColorIndexAt(x, y, bestMatch); } } } } // generates palette ColorPalette imagePalette = resultBitmap.Palette; Color[] entries = imagePalette.Entries; for (Int32 paletteIndex = 0; paletteIndex < allowedColorCount; paletteIndex++) { if (sums[paletteIndex] > 0) { reds[paletteIndex] /= sums[paletteIndex]; greens[paletteIndex] /= sums[paletteIndex]; blues[paletteIndex] /= sums[paletteIndex]; } entries[paletteIndex] = Color.FromArgb(255, reds[paletteIndex], greens[paletteIndex], blues[paletteIndex]); } resultBitmap.Palette = imagePalette; // Make sure the bitmap is not disposed, as we return it. Bitmap tmpBitmap = resultBitmap; resultBitmap = null; return tmpBitmap; } /// /// Converts the histogram to a series of moments. /// private void CalculateMoments() { Int64[] area = new Int64[SIDESIZE]; Int64[] areaRed = new Int64[SIDESIZE]; Int64[] areaGreen = new Int64[SIDESIZE]; Int64[] areaBlue = new Int64[SIDESIZE]; Single[] area2 = new Single[SIDESIZE]; for (Int32 redIndex = 1; redIndex <= MAXSIDEINDEX; ++redIndex) { for (Int32 index = 0; index <= MAXSIDEINDEX; ++index) { area[index] = 0; areaRed[index] = 0; areaGreen[index] = 0; areaBlue[index] = 0; area2[index] = 0; } for (Int32 greenIndex = 1; greenIndex <= MAXSIDEINDEX; ++greenIndex) { Int64 line = 0; Int64 lineRed = 0; Int64 lineGreen = 0; Int64 lineBlue = 0; Single line2 = 0.0f; for (Int32 blueIndex = 1; blueIndex <= MAXSIDEINDEX; ++blueIndex) { line += weights[redIndex, greenIndex, blueIndex]; lineRed += momentsRed[redIndex, greenIndex, blueIndex]; lineGreen += momentsGreen[redIndex, greenIndex, blueIndex]; lineBlue += momentsBlue[redIndex, greenIndex, blueIndex]; line2 += moments[redIndex, greenIndex, blueIndex]; area[blueIndex] += line; areaRed[blueIndex] += lineRed; areaGreen[blueIndex] += lineGreen; areaBlue[blueIndex] += lineBlue; area2[blueIndex] += line2; weights[redIndex, greenIndex, blueIndex] = weights[redIndex - 1, greenIndex, blueIndex] + area[blueIndex]; momentsRed[redIndex, greenIndex, blueIndex] = momentsRed[redIndex - 1, greenIndex, blueIndex] + areaRed[blueIndex]; momentsGreen[redIndex, greenIndex, blueIndex] = momentsGreen[redIndex - 1, greenIndex, blueIndex] + areaGreen[blueIndex]; momentsBlue[redIndex, greenIndex, blueIndex] = momentsBlue[redIndex - 1, greenIndex, blueIndex] + areaBlue[blueIndex]; moments[redIndex, greenIndex, blueIndex] = moments[redIndex - 1, greenIndex, blueIndex] + area2[blueIndex]; } } } } /// /// Computes the volume of the cube in a specific moment. /// private static Int64 Volume(WuColorCube cube, Int64[, ,] moment) { return moment[cube.RedMaximum, cube.GreenMaximum, cube.BlueMaximum] - moment[cube.RedMaximum, cube.GreenMaximum, cube.BlueMinimum] - moment[cube.RedMaximum, cube.GreenMinimum, cube.BlueMaximum] + moment[cube.RedMaximum, cube.GreenMinimum, cube.BlueMinimum] - moment[cube.RedMinimum, cube.GreenMaximum, cube.BlueMaximum] + moment[cube.RedMinimum, cube.GreenMaximum, cube.BlueMinimum] + moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMaximum] - moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMinimum]; } /// /// Computes the volume of the cube in a specific moment. For the floating-point values. /// private static Single VolumeFloat(WuColorCube cube, Single[, ,] moment) { return moment[cube.RedMaximum, cube.GreenMaximum, cube.BlueMaximum] - moment[cube.RedMaximum, cube.GreenMaximum, cube.BlueMinimum] - moment[cube.RedMaximum, cube.GreenMinimum, cube.BlueMaximum] + moment[cube.RedMaximum, cube.GreenMinimum, cube.BlueMinimum] - moment[cube.RedMinimum, cube.GreenMaximum, cube.BlueMaximum] + moment[cube.RedMinimum, cube.GreenMaximum, cube.BlueMinimum] + moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMaximum] - moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMinimum]; } /// /// Splits the cube in given position, and color direction. /// private static Int64 Top(WuColorCube cube, Int32 direction, Int32 position, Int64[, ,] moment) { switch (direction) { case RED: return (moment[position, cube.GreenMaximum, cube.BlueMaximum] - moment[position, cube.GreenMaximum, cube.BlueMinimum] - moment[position, cube.GreenMinimum, cube.BlueMaximum] + moment[position, cube.GreenMinimum, cube.BlueMinimum]); case GREEN: return (moment[cube.RedMaximum, position, cube.BlueMaximum] - moment[cube.RedMaximum, position, cube.BlueMinimum] - moment[cube.RedMinimum, position, cube.BlueMaximum] + moment[cube.RedMinimum, position, cube.BlueMinimum]); case BLUE: return (moment[cube.RedMaximum, cube.GreenMaximum, position] - moment[cube.RedMaximum, cube.GreenMinimum, position] - moment[cube.RedMinimum, cube.GreenMaximum, position] + moment[cube.RedMinimum, cube.GreenMinimum, position]); default: return 0; } } /// /// Splits the cube in a given color direction at its minimum. /// private static Int64 Bottom(WuColorCube cube, Int32 direction, Int64[, ,] moment) { switch (direction) { case RED: return (-moment[cube.RedMinimum, cube.GreenMaximum, cube.BlueMaximum] + moment[cube.RedMinimum, cube.GreenMaximum, cube.BlueMinimum] + moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMaximum] - moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMinimum]); case GREEN: return (-moment[cube.RedMaximum, cube.GreenMinimum, cube.BlueMaximum] + moment[cube.RedMaximum, cube.GreenMinimum, cube.BlueMinimum] + moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMaximum] - moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMinimum]); case BLUE: return (-moment[cube.RedMaximum, cube.GreenMaximum, cube.BlueMinimum] + moment[cube.RedMaximum, cube.GreenMinimum, cube.BlueMinimum] + moment[cube.RedMinimum, cube.GreenMaximum, cube.BlueMinimum] - moment[cube.RedMinimum, cube.GreenMinimum, cube.BlueMinimum]); default: return 0; } } /// /// Calculates statistical variance for a given cube. /// private Single CalculateVariance(WuColorCube cube) { Single volumeRed = Volume(cube, momentsRed); Single volumeGreen = Volume(cube, momentsGreen); Single volumeBlue = Volume(cube, momentsBlue); Single volumeMoment = VolumeFloat(cube, moments); Single volumeWeight = Volume(cube, weights); Single distance = volumeRed * volumeRed + volumeGreen * volumeGreen + volumeBlue * volumeBlue; return volumeMoment - (distance / volumeWeight); } /// /// Finds the optimal (maximal) position for the cut. /// private Single Maximize(WuColorCube cube, Int32 direction, Int32 first, Int32 last, Int32[] cut, Int64 wholeRed, Int64 wholeGreen, Int64 wholeBlue, Int64 wholeWeight) { Int64 bottomRed = Bottom(cube, direction, momentsRed); Int64 bottomGreen = Bottom(cube, direction, momentsGreen); Int64 bottomBlue = Bottom(cube, direction, momentsBlue); Int64 bottomWeight = Bottom(cube, direction, weights); Single result = 0.0f; cut[0] = -1; for (Int32 position = first; position < last; ++position) { // determines the cube cut at a certain position Int64 halfRed = bottomRed + Top(cube, direction, position, momentsRed); Int64 halfGreen = bottomGreen + Top(cube, direction, position, momentsGreen); Int64 halfBlue = bottomBlue + Top(cube, direction, position, momentsBlue); Int64 halfWeight = bottomWeight + Top(cube, direction, position, weights); // the cube cannot be cut at bottom (this would lead to empty cube) if (halfWeight != 0) { Single halfDistance = halfRed * halfRed + halfGreen * halfGreen + halfBlue * halfBlue; Single temp = halfDistance / halfWeight; halfRed = wholeRed - halfRed; halfGreen = wholeGreen - halfGreen; halfBlue = wholeBlue - halfBlue; halfWeight = wholeWeight - halfWeight; if (halfWeight != 0) { halfDistance = halfRed * halfRed + halfGreen * halfGreen + halfBlue * halfBlue; temp += halfDistance / halfWeight; if (temp > result) { result = temp; cut[0] = position; } } } } return result; } /// /// Cuts a cube with another one. /// private Boolean Cut(WuColorCube first, WuColorCube second) { Int32 direction; Int32[] cutRed = { 0 }; Int32[] cutGreen = { 0 }; Int32[] cutBlue = { 0 }; Int64 wholeRed = Volume(first, momentsRed); Int64 wholeGreen = Volume(first, momentsGreen); Int64 wholeBlue = Volume(first, momentsBlue); Int64 wholeWeight = Volume(first, weights); Single maxRed = Maximize(first, RED, first.RedMinimum + 1, first.RedMaximum, cutRed, wholeRed, wholeGreen, wholeBlue, wholeWeight); Single maxGreen = Maximize(first, GREEN, first.GreenMinimum + 1, first.GreenMaximum, cutGreen, wholeRed, wholeGreen, wholeBlue, wholeWeight); Single maxBlue = Maximize(first, BLUE, first.BlueMinimum + 1, first.BlueMaximum, cutBlue, wholeRed, wholeGreen, wholeBlue, wholeWeight); if ((maxRed >= maxGreen) && (maxRed >= maxBlue)) { direction = RED; // cannot split empty cube if (cutRed[0] < 0) return false; } else { if ((maxGreen >= maxRed) && (maxGreen >= maxBlue)) { direction = GREEN; } else { direction = BLUE; } } second.RedMaximum = first.RedMaximum; second.GreenMaximum = first.GreenMaximum; second.BlueMaximum = first.BlueMaximum; // cuts in a certain direction switch (direction) { case RED: second.RedMinimum = first.RedMaximum = cutRed[0]; second.GreenMinimum = first.GreenMinimum; second.BlueMinimum = first.BlueMinimum; break; case GREEN: second.GreenMinimum = first.GreenMaximum = cutGreen[0]; second.RedMinimum = first.RedMinimum; second.BlueMinimum = first.BlueMinimum; break; case BLUE: second.BlueMinimum = first.BlueMaximum = cutBlue[0]; second.RedMinimum = first.RedMinimum; second.GreenMinimum = first.GreenMinimum; break; } // determines the volumes after cut first.Volume = (first.RedMaximum - first.RedMinimum) * (first.GreenMaximum - first.GreenMinimum) * (first.BlueMaximum - first.BlueMinimum); second.Volume = (second.RedMaximum - second.RedMinimum) * (second.GreenMaximum - second.GreenMinimum) * (second.BlueMaximum - second.BlueMinimum); // the cut was successfull return true; } /// /// Marks all the tags with a given label. /// private void Mark(WuColorCube cube, Int32 label, byte[] tag) { for (Int32 redIndex = cube.RedMinimum + 1; redIndex <= cube.RedMaximum; ++redIndex) { for (Int32 greenIndex = cube.GreenMinimum + 1; greenIndex <= cube.GreenMaximum; ++greenIndex) { for (Int32 blueIndex = cube.BlueMinimum + 1; blueIndex <= cube.BlueMaximum; ++blueIndex) { tag[(redIndex << 10) + (redIndex << 6) + redIndex + (greenIndex << 5) + greenIndex + blueIndex] = (byte)label; } } } } } }