CnC_Remastered_Collection/CnCTDRAMapEditor/Utility/WWCompression.cs
PG-SteveT e37e174be1 C&C Remastered Map Editor
Initial commit of C&C Remastered Map Editor code
2020-09-10 11:12:58 -07:00

689 lines
30 KiB
C#

//
// Copyright 2020 Electronic Arts Inc.
//
// The Command & Conquer Map Editor and corresponding source code is free
// software: you can redistribute it and/or modify it under the terms of
// the GNU General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
// The Command & Conquer Map Editor and corresponding source code is distributed
// in the hope that it will be useful, but with permitted additional restrictions
// under Section 7 of the GPL. See the GNU General Public License in LICENSE.TXT
// distributed with this program. You should have received a copy of the
// GNU General Public License along with permitted additional restrictions
// with this program. If not, see https://github.com/electronicarts/CnC_Remastered_Collection
using System;
namespace MobiusEditor.Utility
{
/// <summary>
/// This class contains encoders and decoders for the Westwood XOR Delta and LCW compression schemes.
/// </summary>
public static class WWCompression
{
////////////////////////////////////////////////////////////////////////////////
// Notes
////////////////////////////////////////////////////////////////////////////////
//
// LCW streams should always start and end with the fill command (& 0x80) though
// the decompressor doesn't strictly require that it start with one the ability
// to use the offset commands in place of the RLE command early in the stream
// relies on it. Streams larger than 64k that need the relative versions of the
// 3 and 5 byte commands should start with a null byte before the first 0x80
// command to flag that they are relative compressed.
//
// LCW uses the following rules to decide which command to use:
// 1. Runs of the same colour should only use 4 byte RLE command if longer than
// 64 bytes. 2 and 3 byte offset commands are more efficient otherwise.
// 2. Runs of less than 3 should just be stored as is with the one byte fill
// command.
// 3. Runs greater than 10 or if the relative offset is greater than
// 4095 use an absolute copy. Less than 64 bytes uses 3 byte command, else it
// uses the 5 byte command.
// 4. If Absolute rule isn't met then copy from a relative offset with 2 byte
// command.
//
// Absolute LCW can efficiently compress data that is 64k in size, much greater
// and relative offsets for the 3 and 5 byte commands are needed.
//
// The XOR delta generator code works to the following assumptions
//
// 1. Any skip command is preferable if source and base are same
// 2. Fill is preferable to XOR if 4 or larger, XOR takes same data plus at
// least 1 byte
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Some defines used by the encoders
////////////////////////////////////////////////////////////////////////////////
public const Byte XOR_SMALL = 0x7F;
public const Byte XOR_MED = 0xFF;
public const Int32 XOR_LARGE = 0x3FFF;
public const Int32 XOR_MAX = 0x7FFF;
////////////////////////////////////////////////////////////////////////////////
// Some utility functions to get worst case sizes for buffer allocation
////////////////////////////////////////////////////////////////////////////////
public static Int32 LCWWorstCase(Int32 datasize)
{
return datasize + (datasize / 63) + 1;
}
public static Int32 XORWorstCase(Int32 datasize)
{
return datasize + ((datasize / 63) * 3) + 4;
}
/// <summary>
/// Compresses data to the proprietary LCW format used in
/// many games developed by Westwood Studios. Compression is better
/// than that achieved by popular community tools. This is a new
/// implementation based on understanding of the compression gained from
/// the reference code.
/// </summary>
/// <param name="input">Array of the data to compress.</param>
/// <returns>The compressed data.</returns>
/// <remarks>Commonly known in the community as "format80".</remarks>
public static Byte[] LcwCompress(Byte[] input)
{
if (input == null || input.Length == 0)
return new Byte[0];
//Decide if we are going to do relative offsets for 3 and 5 byte commands
Boolean relative = input.Length > UInt16.MaxValue;
// Nyer's C# conversion: replacements for write and read for pointers.
Int32 getp = 0;
Int32 putp = 0;
// Input length. Used commonly enough to warrant getting it out in advance I guess.
Int32 getend = input.Length;
// "Worst case length" code by OmniBlade. We'll just use a buffer of
// that max length and cut it down to the actual used size at the end.
// Not using it- it's not big enough in case of some small images.
//LCWWorstCase(getend)
Int32 worstcase = Math.Max(10000, getend * 2);
Byte[] output = new Byte[worstcase];
// relative LCW starts with 0 as flag to decoder.
// this is only used by later games for decoding hi-color vqa files.
if (relative)
output[putp++] = 0;
//Implementations that properly conform to the WestWood encoder should
//write a starting cmd1. It's important for using the offset copy commands
//to do more efficient RLE in some cases than the cmd4.
//we also set bool to flag that we have an on going cmd1.
Int32 cmd_onep = putp;
output[putp++] = 0x81;
output[putp++] = input[getp++];
Boolean cmd_one = true;
//Compress data until we reach end of input buffer.
while (getp < getend)
{
//Is RLE encode (4bytes) worth evaluating?
if (getend - getp > 64 && input[getp] == input[getp + 64])
{
//RLE run length is encoded as a short so max is UINT16_MAX
Int32 rlemax = (getend - getp) < UInt16.MaxValue ? getend : getp + UInt16.MaxValue;
Int32 rlep = getp + 1;
while (rlep < rlemax && input[rlep] == input[getp])
rlep++;
UInt16 run_length = (UInt16)(rlep - getp);
//If run length is long enough, write the command and start loop again
if (run_length >= 0x41)
{
//write 4byte command 0b11111110
cmd_one = false;
output[putp++] = 0xFE;
output[putp++] = (Byte)(run_length & 0xFF);
output[putp++] = (Byte)((run_length >> 8) & 0xFF);
output[putp++] = input[getp];
getp = rlep;
continue;
}
}
//current block size for an offset copy
UInt16 block_size = 0;
//Set where we start looking for matching runs.
Int32 offstart = relative ? getp < UInt16.MaxValue ? 0 : getp - UInt16.MaxValue : 0;
//Look for matching runs
Int32 offchk = offstart;
Int32 offsetp = getp;
while (offchk < getp)
{
//Move offchk to next matching position
while (offchk < getp && input[offchk] != input[getp])
offchk++;
//If the checking pointer has reached current pos, break
if (offchk >= getp)
break;
//find out how long the run of matches goes for
Int32 i;
for (i = 1; getp + i < getend; ++i)
if (input[offchk + i] != input[getp + i])
break;
if (i >= block_size)
{
block_size = (UInt16)i;
offsetp = offchk;
}
offchk++;
}
//decide what encoding to use for current run
//If it's less than 2 bytes long, we store as is with cmd1
if (block_size <= 2)
{
//short copy 0b10??????
//check we have an existing 1 byte command and if its value is still
//small enough to handle additional bytes
//start a new command if current one doesn't have space or we don't
//have one to continue
if (cmd_one && output[cmd_onep] < 0xBF)
{
//increment command value
output[cmd_onep]++;
output[putp++] = input[getp++];
}
else
{
cmd_onep = putp;
output[putp++] = 0x81;
output[putp++] = input[getp++];
cmd_one = true;
}
//Otherwise we need to decide what relative copy command is most efficient
}
else
{
Int32 offset;
Int32 rel_offset = getp - offsetp;
if (block_size > 0xA || ((rel_offset) > 0xFFF))
{
//write 5 byte command 0b11111111
if (block_size > 0x40)
{
output[putp++] = 0xFF;
output[putp++] = (Byte)(block_size & 0xFF);
output[putp++] = (Byte)((block_size >> 8) & 0xFF);
//write 3 byte command 0b11??????
}
else
{
output[putp++] = (Byte)((block_size - 3) | 0xC0);
}
offset = relative ? rel_offset : offsetp;
//write 2 byte command? 0b0???????
}
else
{
offset = rel_offset << 8 | (16 * (block_size - 3) + (rel_offset >> 8));
}
output[putp++] = (Byte)(offset & 0xFF);
output[putp++] = (Byte)((offset >> 8) & 0xFF);
getp += block_size;
cmd_one = false;
}
}
//write final 0x80, basically an empty cmd1 to signal the end of the stream.
output[putp++] = 0x80;
Byte[] finalOutput = new Byte[putp];
Array.Copy(output, 0, finalOutput, 0, putp);
// Return the final compressed data.
return finalOutput;
}
/// <summary>
/// Decompresses data in the proprietary LCW format used in many games
/// developed by Westwood Studios.
/// </summary>
/// <param name="input">The data to decompress.</param>
/// <param name="readOffset">Location to start at in the input array.</param>
/// <param name="output">The buffer to store the decompressed data. This is assumed to be initialized to the correct size.</param>
/// <param name="readEnd">End offset for reading. Use 0 to take the end of the given data array.</param>
/// <returns>Length of the decompressed data in bytes.</returns>
public static Int32 LcwDecompress(Byte[] input, ref Int32 readOffset, Byte[] output, Int32 readEnd)
{
if (input == null || input.Length == 0 || output == null || output.Length == 0)
return 0;
Boolean relative = false;
// Nyer's C# conversion: replacements for write and read for pointers.
Int32 writeOffset = 0;
// Output length should be part of the information given in the file format using LCW.
// Techncically it can just be cropped at the end, though this value is used to
// automatically cut off repeat-commands that go too far.
Int32 writeEnd = output.Length;
if (readEnd <= 0)
readEnd = input.Length;
//Decide if the stream uses relative 3 and 5 byte commands
//Extension allows effective compression of data > 64k
//https://github.com/madmoose/scummvm/blob/bladerunner/engines/bladerunner/decompress_lcw.cpp
// this is only used by later games for decoding hi-color vqa files.
// For other stuff (like shp), just check in advance to decide if the data is too big.
if (readOffset >= readEnd)
return writeOffset;
if (input[readOffset] == 0)
{
relative = true;
readOffset++;
}
//DEBUG_SAY("LCW Decompression... \n");
while (writeOffset < writeEnd)
{
if (readOffset >= readEnd)
return writeOffset;
Byte flag = input[readOffset++];
UInt16 cpysize;
UInt16 offset;
if ((flag & 0x80) != 0)
{
if ((flag & 0x40) != 0)
{
cpysize = (UInt16)((flag & 0x3F) + 3);
//long set 0b11111110
if (flag == 0xFE)
{
if (readOffset >= readEnd)
return writeOffset;
cpysize = input[readOffset++];
if (readOffset >= readEnd)
return writeOffset;
cpysize += (UInt16)((input[readOffset++]) << 8);
if (cpysize > writeEnd - writeOffset)
cpysize = (UInt16)(writeEnd - writeOffset);
if (readOffset >= readEnd)
return writeOffset;
//DEBUG_SAY("0b11111110 Source Pos %ld, Dest Pos %ld, Count %d\n", source - sstart - 3, dest - start, cpysize);
for (; cpysize > 0; --cpysize)
{
if (writeOffset >= writeEnd)
return writeOffset;
output[writeOffset++] = input[readOffset];
}
readOffset++;
}
else
{
Int32 s;
//long move, abs 0b11111111
if (flag == 0xFF)
{
if (readOffset >= readEnd)
return writeOffset;
cpysize = input[readOffset++];
if (readOffset >= readEnd)
return writeOffset;
cpysize += (UInt16)((input[readOffset++]) << 8);
if (cpysize > writeEnd - writeOffset)
cpysize = (UInt16)(writeEnd - writeOffset);
if (readOffset >= readEnd)
return writeOffset;
offset = input[readOffset++];
if (readOffset >= readEnd)
return writeOffset;
offset += (UInt16)((input[readOffset++]) << 8);
//extended format for VQA32
if (relative)
s = writeOffset - offset;
else
s = offset;
//DEBUG_SAY("0b11111111 Source Pos %ld, Dest Pos %ld, Count %d, Offset %d\n", source - sstart - 5, dest - start, cpysize, offset);
for (; cpysize > 0; --cpysize)
{
if (writeOffset >= writeEnd)
return writeOffset;
output[writeOffset++] = output[s++];
}
//short move abs 0b11??????
}
else
{
if (cpysize > writeEnd - writeOffset)
cpysize = (UInt16)(writeEnd - writeOffset);
if (readOffset >= readEnd)
return writeOffset;
offset = input[readOffset++];
if (readOffset >= readEnd)
return writeOffset;
offset += (UInt16)((input[readOffset++]) << 8);
//extended format for VQA32
if (relative)
s = writeOffset - offset;
else
s = offset;
//DEBUG_SAY("0b11?????? Source Pos %ld, Dest Pos %ld, Count %d, Offset %d\n", source - sstart - 3, dest - start, cpysize, offset);
for (; cpysize > 0; --cpysize)
{
if (writeOffset >= writeEnd)
return writeOffset;
output[writeOffset++] = output[s++];
}
}
}
//short copy 0b10??????
}
else
{
if (flag == 0x80)
{
//DEBUG_SAY("0b10?????? Source Pos %ld, Dest Pos %ld, Count %d\n", source - sstart - 1, dest - start, 0);
return writeOffset;
}
cpysize = (UInt16)(flag & 0x3F);
if (cpysize > writeEnd - writeOffset)
cpysize = (UInt16)(writeEnd - writeOffset);
//DEBUG_SAY("0b10?????? Source Pos %ld, Dest Pos %ld, Count %d\n", source - sstart - 1, dest - start, cpysize);
for (; cpysize > 0; --cpysize)
{
if (readOffset >= readEnd || writeOffset >= writeEnd)
return writeOffset;
output[writeOffset++] = input[readOffset++];
}
}
//short move rel 0b0???????
}
else
{
cpysize = (UInt16)((flag >> 4) + 3);
if (cpysize > writeEnd - writeOffset)
cpysize = (UInt16)(writeEnd - writeOffset);
if (readOffset >= readEnd)
return writeOffset;
offset = (UInt16)(((flag & 0xF) << 8) + input[readOffset++]);
//DEBUG_SAY("0b0??????? Source Pos %ld, Dest Pos %ld, Count %d, Offset %d\n", source - sstart - 2, dest - start, cpysize, offset);
for (; cpysize > 0; --cpysize)
{
if (writeOffset >= writeEnd || writeOffset < offset)
return writeOffset;
output[writeOffset] = output[writeOffset - offset];
writeOffset++;
}
}
}
// If buffer is full, make sure to skip end command!
if (writeOffset == writeEnd && readOffset < input.Length && input[readOffset] == 0x80)
readOffset++;
return writeOffset;
}
/// <summary>
/// Generates a binary delta between two buffers. Mainly used for image data.
/// </summary>
/// <param name="source">Buffer containing data to generate the delta for.</param>
/// <param name="base">Buffer containing data that is the base for the delta.</param>
/// <returns>The generated delta as bytes array.</returns>
/// <remarks>Commonly known in the community as "format40".</remarks>
public static Byte[] GenerateXorDelta(Byte[] source, Byte[] @base)
{
// Nyer's C# conversion: replacements for write and read for pointers.
// -for our delta (output)
Int32 putp = 0;
// -for the image we go to
Int32 getsp = 0;
// -for the image we come from
Int32 getbp = 0;
//Length to process
Int32 getsendp = Math.Min(source.Length, @base.Length);
Byte[] dest = new Byte[XORWorstCase(getsendp)];
//Only check getsp to save a redundant check.
//Both source and base should be same size and both pointers should be
//incremented at the same time.
while (getsp < getsendp)
{
UInt32 fillcount = 0;
UInt32 xorcount = 0;
UInt32 skipcount = 0;
Byte lastxor = (Byte)(source[getsp] ^ @base[getbp]);
Int32 testsp = getsp;
Int32 testbp = getbp;
//Only evaluate other options if we don't have a matched pair
while (testsp < getsendp && source[testsp] != @base[testbp])
{
if ((source[testsp] ^ @base[testbp]) == lastxor)
{
++fillcount;
++xorcount;
}
else
{
if (fillcount > 3)
break;
lastxor = (Byte)(source[testsp] ^ @base[testbp]);
fillcount = 1;
++xorcount;
}
testsp++;
testbp++;
}
//fillcount should always be lower than xorcount and should be greater
//than 3 to warrant using the fill commands.
fillcount = fillcount > 3 ? fillcount : 0;
//Okay, lets see if we have any xor bytes we need to handle
xorcount -= fillcount;
while (xorcount != 0)
{
UInt16 count;
//It's cheaper to do the small cmd twice than do the large cmd once
//for data that can be handled by two small cmds.
//cmd 0???????
if (xorcount < XOR_MED)
{
count = (UInt16)(xorcount <= XOR_SMALL ? xorcount : XOR_SMALL);
dest[putp++] = (Byte)count;
//cmd 10000000 10?????? ??????
}
else
{
count = (UInt16)(xorcount <= XOR_LARGE ? xorcount : XOR_LARGE);
dest[putp++] = 0x80;
dest[putp++] = (Byte)(count & 0xFF);
dest[putp++] = (Byte)(((count >> 8) & 0xFF) | 0x80);
}
while (count != 0)
{
dest[putp++] = (Byte)(source[getsp++] ^ @base[getbp++]);
count--;
xorcount--;
}
}
//lets handle the bytes that are best done as xorfill
while (fillcount != 0)
{
UInt16 count;
//cmd 00000000 ????????
if (fillcount <= XOR_MED)
{
count = (UInt16)fillcount;
dest[putp++] = 0;
dest[putp++] = (Byte)(count & 0xFF);
//cmd 10000000 11?????? ??????
}
else
{
count = (UInt16)(fillcount <= XOR_LARGE ? fillcount : XOR_LARGE);
dest[putp++] = 0x80;
dest[putp++] = (Byte)(count & 0xFF);
dest[putp++] = (Byte)(((count >> 8) & 0xFF) | 0xC0);
}
dest[putp++] = (Byte)(source[getsp] ^ @base[getbp]);
fillcount -= count;
getsp += count;
getbp += count;
}
//Handle regions that match exactly
while (testsp < getsendp && source[testsp] == @base[testbp])
{
skipcount++;
testsp++;
testbp++;
}
while (skipcount != 0)
{
UInt16 count;
//Again it's cheaper to do the small cmd twice than do the large cmd
//once for data that can be handled by two small cmds.
//cmd 1???????
if (skipcount < XOR_MED)
{
count = (Byte)(skipcount <= XOR_SMALL ? skipcount : XOR_SMALL);
dest[putp++] = (Byte)(count | 0x80);
//cmd 10000000 0??????? ????????
}
else
{
count = (UInt16)(skipcount <= XOR_MAX ? skipcount : XOR_MAX);
dest[putp++] = 0x80;
dest[putp++] = (Byte)(count & 0xFF);
dest[putp++] = (Byte)((count >> 8) & 0xFF);
}
skipcount -= count;
getsp += count;
getbp += count;
}
}
//final skip command of 0 to signal end of stream.
dest[putp++] = 0x80;
dest[putp++] = 0;
dest[putp++] = 0;
Byte[] finalOutput = new Byte[putp];
Array.Copy(dest, 0, finalOutput, 0, putp);
// Return the final data
return finalOutput;
}
/// <summary>
/// Applies a binary delta to a buffer.
/// </summary>
/// <param name="data">The data to apply the xor to.</param>
/// <param name="xorSource">The the delta data to apply.</param>
/// <param name="xorStart">Start offset in the data.</param>
/// <param name="xorEnd">End offset in the data. Use 0 to take the end of the whole array.</param>
public static void ApplyXorDelta(Byte[] data, Byte[] xorSource, ref Int32 xorStart, Int32 xorEnd)
{
// Nyer's C# conversion: replacements for write and read for pointers.
Int32 putp = 0;
Byte value = 0;
Int32 dataEnd = data.Length;
if (xorEnd <= 0)
xorEnd = xorSource.Length;
while (putp < dataEnd && xorStart < xorEnd)
{
//DEBUG_SAY("XOR_Delta Put pos: %u, Get pos: %u.... ", putp - scast<sint8*>(dest), getp - scast<sint8*>(source));
Byte cmd = xorSource[xorStart++];
UInt16 count = cmd;
Boolean xorval = false;
if ((cmd & 0x80) == 0)
{
//0b00000000
if (cmd == 0)
{
if (xorStart >= xorEnd)
return;
count = (UInt16)(xorSource[xorStart++] & 0xFF);
if (xorStart >= xorEnd)
return;
value = xorSource[xorStart++];
xorval = true;
//DEBUG_SAY("0b00000000 Val Count %d ", count);
//0b0???????
}
}
else
{
//0b1??????? remove most significant bit
count &= 0x7F;
if (count != 0)
{
putp += count;
//DEBUG_SAY("0b1??????? Skip Count %d\n", count);
continue;
}
if (xorStart >= xorEnd)
return;
count = (UInt16) (xorSource[xorStart++] & 0xFF);
if (xorStart >= xorEnd)
return;
count += (UInt16) (xorSource[xorStart++] << 8);
//0b10000000 0 0
if (count == 0)
{
//DEBUG_SAY("0b10000000 Count %d to end delta\n", count);
return;
}
//0b100000000 0?
if ((count & 0x8000) == 0)
{
putp += count;
//DEBUG_SAY("0b100000000 0? Skip Count %d\n", count);
continue;
}
//0b10000000 11
if ((count & 0x4000) != 0)
{
count &= 0x3FFF;
if (xorStart >= xorEnd)
return;
value = xorSource[xorStart++];
//DEBUG_SAY("0b10000000 11 Val Count %d ", count);
xorval = true;
//0b10000000 10
}
else
{
count &= 0x3FFF;
//DEBUG_SAY("0b10000000 10 XOR Count %d ", count);
}
}
if (xorval)
{
//DEBUG_SAY("XOR Val %d\n", value);
for (; count > 0; --count)
{
if (putp >= dataEnd)
return;
data[putp++] ^= value;
}
}
else
{
//DEBUG_SAY("XOR Source to Dest\n");
for (; count > 0; --count)
{
if (putp >= dataEnd || xorStart >= xorEnd)
return;
data[putp++] ^= xorSource[xorStart++];
}
}
}
}
}
}